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1 Geodesics, Harmonic Maps, and Heat Flow
We propose a novel algorithm for computing geodesic paths on
general manifolds given only the ability to perform closest point
queries. Many computer graphics applications require the compu-
tation of geodesic paths (see e.g., [Sharp and Crane 2020]), which
involves minimizing length (e.g., [Yuan et al. 2021]) or geodesic cur-
vature (e.g., [Martínez et al. 2005]). However, as Yuan et al. [2021]
point out, existing methods have mainly been designed specifically
for meshes. Instead, we view geodesics in the setting of harmonic
maps, which leads to an algorithm that can be applied to meshes,
parametric surfaces, point clouds, level sets, exact closest point func-
tions, and more. Figure 1 shows some geodesics (red) computed on
different manifold representations with our algorithm.

A harmonic map u(x) : M → N is a mapping from a source
manifoldM ⊆ R𝑚 to a target manifold N ⊆ R𝑛 that minimizes

𝐸𝐻 (u) = 1
2

∫
M

∥JMu ∥2F 𝑑M, (1)

i.e., the Dirichlet energy, where JMu is the intrinsic Jacobian of the
map on M and ∥ · ∥F is the Frobenius norm. Due to the constraint
that u ∈ N , the gradient descent flow for (1) is [Mémoli et al. 2004]

𝜕u
𝜕𝑡

= Π𝑇uN (ΔMu), (2)

where Π𝑇uN is the projection onto the tangent space ofN at u and
ΔM is the Laplace-Beltrami operator (applied componentwise).

We use a key fact stated by Eells and Lemaire [1978]: if dim M =

1, then harmonic maps are geodesics of N . Such a map will yield a
closed or open geodesic on N depending on if M is closed (e.g., a
circle) or open (e.g., a line segment), respectively. Our approach is
therefore to compute a geodesic on the manifold N by computing
a harmonic map from the 1D line segmentM = [0, 1] to N .

We adopt the harmonic mapping approach of King and Ruuth
[2017] to minimize (1) by evolving (2) via a splitting method. Our
resulting algorithm requires only heat flow on the 1D line segment
and the closest point projection cpN onto N — it inherits these
attractive features from the method of King and Ruuth. Since they
did not consider the geodesic problem, we discuss in Section 2 some
intricacies involved in computing initial paths and stopping criteria.

For the line segment 𝑥 ∈ M = [0, 1], the Laplace-Beltrami
operator is simply ΔM = 𝜕2

𝜕𝑥2 . The initial condition for the gradient
descent flow is some path u0 (𝑥) ∈ N . Starting from 𝑘 = 0, the
geodesic path is computed by iterating the following two steps:

( I ) Solve 𝜕v
𝜕𝑡

=
𝜕2v
𝜕𝑥2

, v(𝑥, 0) = u𝑘 (𝑥), for one time step of size
Δ𝑡 using explicit Euler.

( II ) Project v(𝑥,Δ𝑡) onto N via u𝑘+1 (𝑥) = cpN (v(𝑥,Δ𝑡)) .
The notation in step ( I ) means to solve the heat equation indepen-
dently for each component of v. For open geodesics with endpoints

Figure 1: Our algorithm to compute geodesic paths is appli-
cable to any manifold representation that supports closest
point queries. The initial path (blue) is iteratively shortened
to a geodesic (red) using our heat-based method. Manifold
representation from left to right: exact closest points, mesh,
parameterization, level set.

p, q ∈ N , Dirichlet boundary conditions u(0) = p and u(1) = q
are imposed. For closed geodesics, we use periodic boundary condi-
tions u(0) = u(1) on the line segment to avoid complicating step ( I )
when M is curved (e.g., a circle).

2 Discretization
The dimension 𝑛 of the embedding space R𝑛 for N is taken to
be as small as possible, i.e., 𝑛 = dim N + 1, for efficiency. For
example, 𝑛 = 3 if N is a surface (2D manifold). The line segment
M = [0, 1] is discretized using equally spaced grid points 𝑥𝑖 = 𝑖Δ𝑥
for 𝑖 = 0, 1, . . . , 𝑁 +1 and Δ𝑥 = 1

𝑁+1 . The geodesic path u ∈ N ⊆ R𝑛

is represented discretely as a polyline with vertices u𝑖 = u(𝑥𝑖 ).
Step ( I ) of the algorithm is applied independently for each of the

𝑛 dimensions of u. Let𝑢 and 𝑣 denote one of the particular 𝑛 compo-
nents of u and v, respectively. Second-order centred differences are
used to discretize 𝜕2/𝜕𝑥2. On iteration 𝑘 , we set v𝑖 = u𝑘

𝑖
, then apply

one step of explicit Euler to the heat equation, with Δ𝑡 = 0.5Δ𝑥2:

𝑣Δ𝑡𝑖 = 𝑣𝑖 +
Δ𝑡

Δ𝑥2
(𝑣𝑖−1 − 2𝑣𝑖 + 𝑣𝑖+1). (3)

Then step ( II ) couples the 𝑛 dimensions again for each vertex 𝑖 of
the path via u𝑘+1

𝑖
= cpN (vΔ𝑡

𝑖
) . The closest point computation is

different for each type of manifold representation, but is viewed as
a black box. King et al. [2024, Appendix A] provide closest point
computation details for many common representations.

Initial Path Construction. Since our method works for general
manifold representations via closest point queries, our path ini-
tialization should also. We therefore construct a uniform grid of
points y𝑖 in the embedding space of N with ∥y𝑖 − cpN (y𝑖 )∥ ≤ 3ℎ

2 ,
where ℎ is the grid spacing. King et al. [2024] provide a memory
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and runtime efficient algorithm to construct the grid, denoted Ω.
We use Dijkstra’s algorithm to compute a path between the nearest
grid points in Ω to p and q. We then replace the grid points y𝑖 in
Dijkstra’s path with their previously computed cpN (y𝑖 ). Finally,
we spatially adapt the initial path, splitting and collapsing edges
until all edge midpoints lie no further from N than a tolerance.

Stopping Criteria. Different stopping criteria have been used pre-
viously for iterative geodesic algorithms. Perhaps the most obvious
stopping criterion would monitor the change in length of the curve.
However, as Martínez et al. [2005, Section 3.3.1] discuss, the differ-
ence in lengths between consecutive iterations can be small even
when the iteration has not converged. We observe the same be-
haviour in practice for our method. Instead, we measure the average
change of the vertices in u between consecutive iterations and stop
if 𝑎 is less than a specified tolerance. We have observed that the
individual vertices still move when not converged, even when the
length of u only changes slightly.

3 Comparison to Yuan et al. [2021]
One variant of themethod of Yuan et al. has some similarities to ours.
However, their perspective is based on the length minimization
property of geodesics. For a continuously differentiable curve 𝛾 :
[0, 1] → N the functional

𝐸𝐿 (𝛾) =
∫ 1

0
𝐻 (∥𝛾 ′ (𝑡)∥) 𝑑𝑡,

has the same critical points as the length functional, i.e., 𝐸𝐿 (𝛾) with
𝐻 (𝑠) = 𝑠 . The function 𝐻 (𝑠) must be convex and satisfy 𝐻 ′ (𝑠) > 0
and 𝐻 ′′ (𝑠) ≥ 0. Yuan et al. minimize 𝐸𝐿 (𝛾) using LBFGS and show
(albeit with a simple example of shortening a “S” shaped curve in
the plane) that 𝐻 (𝑠) = 𝑠2 and 𝐻 (𝑠) = 𝑒𝑠

2 − 1 require far fewer
iterations than 𝐻 (𝑠) = 𝑠 . They chose 𝐻 (𝑠) = 𝑒𝑠

2 − 1 since slightly
fewer iterations were needed compared to 𝐻 (𝑠) = 𝑠2.

In the discrete setting, there are subtle differences between our
method and theirs with 𝐻 (𝑠) = 𝑠2. For this specific case, the ∇𝐸𝐿
used in LBFGS is a scalar multiple of the finite difference scheme
we use for 𝜕2/𝜕𝑥2 in (3). The 𝜕2/𝜕𝑥2 term is related to the gradient
of 𝐸𝐻 , but only the specific combination in steps ( I )-( II ) give a
first-order consistent discretization of the gradient descent flow
(see King and Ruuth [2017, Section 3.2] for the proof).

Importantly, our approach does not require computing and ap-
plying the projection operatorΠ𝑇uN . Yuan et al. useΠ𝑇uN to project
∇𝐸𝐿 onto the tangent space ofN ; otherwise their minimization does
not converge. Even with these projected gradients their method
can produce geodesics that are not strictly in N . Therefore, after
each iteration, they put the vertices of their path on N by comput-
ing closest points. They give no theoretical justification for using
Π𝑇uN (∇𝐸𝐿) or cpN , whereas, our approach has firm theoretical
justification for not needing Π𝑇uN and computing cpN in step ( II ).

Avoiding computation of Π𝑇uN is the principal reason we enjoy
the faster runtimes shown in Figure 2. This result is significant
since their method was faster than 9 others they compared against
(only Dijkstra’s algorithm was faster, but it does not provide a
smooth path due to its restriction to edges). Yuan et al. did not,
however, compare to [Sharp and Crane 2020], which only works on
trianglemeshes, but requires only∼10% of the runtime for Dijkstra’s

10010�110�210�310�4
0

400

800

1200

1600

#
pa
th
s

runtime (sec)

Ours
Yuan et al.

(a) Fish

10010�110�210�310�4
0

500

1000

1500

2000

#
pa
th
s

runtime (sec)

Ours
Yuan et al.

(b) Möbius Strip

Figure 2: Computing geodesics fromone vertex to every other
vertex in the mesh of (a) a fish and (b) a Möbius strip. Our ap-
proach can achieve runtimes nearly two orders of magnitude
faster than Yuan et al. [2021] starting from the same initial
path. On average our algorithm is slightly faster than theirs.

algorithm. We hope our approach can achieve similar runtimes in
the future since both steps ( I ) and ( II ) are easily parallelizable.
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