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APMA 935 Grayscale Segmentation

1 Introduction

Image segmentation is a crucial step in many computer vision applications. Some appli-
cations, such as face detection [1], medical image detection of tumors [2] and brake light
detection [3], deal with object recognition and interpretation. A popular form of image
segmentation assumes that distinct objects in an image have different and approximately
constant colors or intensities. Naturally one decomposes an image domain, Ω, into ap-
proximately homogeneous regions that are separated by sharp changes in image features.
Boundaries of the homogeneous regions are called “edges”.

This project explores two different image segmentation techniques. The methods are
based on variational models, which determine the segmentation by minimizing an appro-
priately chosen energy. Here we only consider the segmentation of grayscale images. Let
I0(x) : Ω → [0, 1] be an initial grayscale image and assume I0(x) is a bounded measurable
function. To acquire a segmentation of I0(x), look for the minimum of the Mumford–Shah
energy [4],

min
I(x): Ω→R
K⊆Ω

{
MS(I,K) :=

∫
Ω\K
|∇I|2dx + µ Length(K) + λ

∫
Ω

(I − I0)2dx

}
. (1)

The minimization of the Mumford–Shah energy looks for the best “cartoon like” approxi-
mation of minimal complexity for I0. The set K is a closed subset of Ω given by the union of
a finite number of curves that represent the set of “edges” (i.e. boundaries of homogeneous
regions) in the image I0. The function I is a piecewise smooth approximation of I0. Jumps
across curves in K are allowed, but I is forced to be smooth over each region due to the
Dirichlet integral over Ω\K.

Equation (1) is the minimization of the full Mumford–Shah energy functional, however in
many image processing applications solving (1) is unnecessary. It may be known that objects
in an image are not only smoothly varying, but approximately constant in color or grayscale
intensity. Separating gray matter from white matter in a brain MRI image is an example
where there are two approximately homogenous regions. This supplies a useful simplification
of (1) where the function I will only take on two values. For such cases I(x) = c11ω + c21Ω\ω̄
and we minimize the piecewise constant Mumford–Shah energy

min
ω⊆Ω

c1,c2∈R

{
E(ω, c1, c2) := Per(ω; Ω) + λ

∫
Ω

(c1 − I0)2dx + λ

∫
Ω\ω̄

(c2 − I0)2dx

}
, (2)

where ω defines one homogeneous region in Ω and Ω\ω̄ therefore gives the second region.
Per(ω; Ω) denotes the perimeter around the region ω.

The energy minimized by both methods here is the piecewise constant Mumford–Shah
energy (2). The methods differ however in their approach to minimize the latter energy.
The first method uses a level set approach to determine a segmentation contour. The second
method is inspired by work of Merriman et al. [5] on diffusion generated motion by mean
curvature. Both methods are quite simple for the case of two regions, but can also be
extended for more than two regions.

The project is organized as follows. A description of each method is given in section 2.
The first method, detailed in section 2.1, is that of Chan and Vese [6]. A zero level set is
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used to represent the boundary between two objects. A method using the entire level set
function is then implemented to minimize the piecewise constant Mumford–Shah energy (2).
Section 2.2 will discuss the method by Esedoḡlu and Tsai [7], which minimizes the piecewise
constant Mumford–Shah energy (2) using threshold dynamics. A gradient descent flow is
derived and solved by splitting the equation and determine one part via thresholding. The
start of section 2.2 will discuss the Merriman–Bence–Osher (MBO) method [5] that motivates
the thresholding method of Esedoḡlu and Tsai. Numerical experiments for both methods
are examined in section 3. These experiments aim to illustrate the strengths and weaknesses
of each method. We conclude with some practical remarks and behaviours of each method
in section 4.

2 Description of Segmentation Methods

Here we detail each of the segmentation methods explored in this project. Both methods
minimize the piecewise constant Mumford–Shah energy (2). We introduce the level set
approach by Chan and Vese [6] first. The threshold dynamics method by Esedoḡlu and
Tsai [7] is given thereafter. The methods will be referred to as the Chan–Vese method
and the Esedoḡlu–Tsai method. A brief description of the MBO method will also be given
inspiration for the Esedoḡlu–Tsai method. Each of the methods will be illustrated for the
case of two approximately homogenous regions.

2.1 Active Contours Without Edges

Classically, image segmentation uses active contour models (or snakes) with edge detection
based on |∇I0|. The basic idea of active contour models is to evolve a contour in Ω until
edges of an object are detected. Edge detection is usually imposed in terms of the size of
the gradient in the intensity I0. This assumes that there is an edge where |∇I0| is infinite.
The latter assumption is, however, not appropriate for all images. In practice the discrete
gradients are bounded, which can cause curves to pass through edges. Instead the Chan–Vese
method uses an active contour model without edge detection using |∇I0|.

For the Chan–Vese method denote C = ∂ω where ω is an open subset of I0. Let inside(C)
and outside(C) denote the regions ω and Ω\ω̄, respectively. The method is based on the
minimization of the piecewise constant Mumford–Shah energy (2). The image I0 is assumed
to consist of two approximately piecewise constant intensities, where C0 gives the bound-
ary curve between the regions. The distinct intensities are denoted I i0 and Io0 , which are
inside(C0) and outside(C0) respectively. Assume also that the desired object to be seg-
mented is given by the region with approximate intensity I i0.

To give intuition for the Chan–Vese method consider the following “fitting” energy

F1(C) + F2(C) =

∫
inside(C)

|I0(x)− c1|2 dx +

∫
outside(C)

|I0(x)− c2|2 dx, (3)

where c1, c2 depend on C as the averages of I0 inside(C) and outside(C), respectively. Notice
that the fitting energy is minimized by the boundary of the object C0,

inf
C
{F1(C) + F2(C)} ≈ 0 ≈ F1(C0) + F2(C0). (4)
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F1(C ) > 0, F2(C ) ≈ 0, Fitt ing > 0 F1(C ) ≈ 0, F2(C ) > 0, Fitt ing > 0

F1(C ) > 0, F2(C ) > 0, Fitt ing > 0 F1(C ) ≈ 0, F2(C ) ≈ 0, Fitt ing ≈ 0

Figure 1: Illustration that the boundary of an object minimizes the fitting energy.

This can be easily seen from figure 1. If the curve C is outside the entire object then
F1(C) > 0 and F2(C) ≈ 0. The opposite occurs if C is entirely inside the object, that is
F1(C) ≈ 0 and F2(C) > 0. If the curve C is simultaneous inside and outside the object then
both F1(C) > 0 and F2(C) > 0. Therefore the fitting energy is minimized when C = C0, the
boundary of the object, since there F1(C) ≈ 0 and F2(C) ≈ 0.

The energy minimized by Chan and Vese is the fitting energy (3) plus a term for regu-
larization of the curve C. To determine the segmentation of the image I0 we solve

(5)inf
c1,c2,C

{
µ Length(C) + λ1

∫
inside(C)

|I0 − c1|2 dx + λ2

∫
outside(C)

|I0 − c2|2 dx
}
,

where µ ≥ 0, λ1 ≥ 0 and λ2 ≥ 0 are tunable parameters. A regularization term dependant
on the area inside C could also be incorporated, but is not explored here. The method by
Chan and Vese formulates the energy (5) in terms of a level set function.

The level set method represents the curve C ⊂ I0 by the zero level set of a function
φ(x) : I0(x) → R. The level set function is defined to be negative outside(C) and positive
inside(C). So in full we have that

C = ∂ω = {x ∈ Ω|φ(x) = 0},
inside(C) = ω = {x ∈ Ω|φ(x) > 0},
outside(C) = Ω\ω̄ = {x ∈ Ω|φ(x) < 0}.

(6)
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Now the minimization problem (5) can be formulated using the level set function (6). The
level set method is desirable here because it easily tracks the curve C.

The perimeter of a set S is given by Per(S) =
∫
|∇χ(S)|, where χ is the characteristic

function of S. Since the curve C is determined by the set where φ < 0, the length of
C = {φ = 0} is given by

Length{φ = 0} =

∫
Ω

|∇H(φ(x))| dx,

=

∫
Ω

δ0(φ(x))|∇φ(x)| dx,

where

H(z) =

{
1 if z ≥ 0,
0 if z < 0,

δ0(z) =
d

dz
H(z),

are the Heaviside function and Dirac delta measure, respectively. The other two terms in
(5) can be expressed in terms of the level set function as∫

φ>0

|I0(x)− c1|2 dx =

∫
Ω

|I0(x)− c1|2H(φ(x)) dx,

and ∫
φ<0

|I0(x)− c2|2 dx =

∫
Ω

|I0(x)− c2|2(1−H(φ(x))) dx.

The energy to be minimize for the Chan–Vese method is therefore

F (c1, c2, φ) := µ

∫
Ω

δ0(φ(x))|∇φ(x)| dx + λ1

∫
Ω

|I0(x)− c1|2H(φ(x)) dx,

+ λ2

∫
Ω

|I0(x)− c2|2(1−H(φ(x))) dx.

Now keep φ(x) fixed and minimize the energy F (c1, c2, φ) with respect to constants c1 or
c2. One can then show that if C has nonempty interior in Ω (i.e.

∫
Ω
H(φ(x)) dx 6= 0), then

the optimal value of c1 is

c1(φ) =

∫
Ω
I0(x)H(φ(x)) dx∫
Ω
H(φ(x)) dx

.

Also, if C has nonempty exterior in Ω (i.e.
∫

Ω
(1−H(φ(x))) dx 6= 0), then the optimal value

of c2 is

c2(φ) =

∫
Ω
I0(x)(1−H(φ(x))) dx∫

Ω
(1−H(φ(x))) dx

.

The latter formulas for c1 and c2 amount to{
c1(φ) = mean(I0) in {φ ≥ 0},
c2(φ) = mean(I0) in {φ < 0}. (7)

To solve the entire minimization problem,

inf
c1,c2,φ

F (c1, c2, φ),
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we minimize with respect to φ with the constants c1, c2 fixed as in (7). The corresponding
Euler–Lagrange equations are derived for φ and gradient descent flow is used to minimize
F (c1, c2, φ). Let t ≥ 0 be artificial time and φ(t,x) define the level set function at time t.
The initial contour is given by {φ(0,x) = 0} = {φ0(x) = 0} and the gradient descent flow
becomes

∂φ

∂t
= δ0(φ)

[
µ ∇ ·

(
∇φ
|∇φ|

)
− λ1(I0 − c1)2 + λ2(I0 − c2)2

]
= 0 in (0,∞)× Ω,

φ(0,x) = φ0(x) in Ω,

∂φ

∂~n
= 0 on ∂Ω,

(8)

where ~n denotes the exterior normal to ∂Ω and ∂φ/∂~n is the normal derivative of φ at the
boundary ∂Ω. Section 3 discusses the numerical implementation of (8).

2.2 Threshold Dynamics

The method proposed by Esedoḡlu and Tsai [7] is based on threshold dynamics of the piece-
wise constant Mumford–Shah energy (2). The piecewise constant Mumford–Shah energy (2)
is minimized by gradient descent flow. The resulting gradient descent flow is split into a lin-
ear parabolic equation and an equation which is solved by thresholding. The Esedoḡlu–Tsai
method was inspired by the MBO method [5]. The MBO method is recalled here first then
we describe the Esedoḡlu–Tsai method.

2.2.1 Diffusion Generated Motion by Mean Curvature

The MBO method was discovered from a simple intuition. Imagine that a set of points in a
plane is allowed to “diffuse”. Diffusion will rapidly blunt sharp points on the boundary, but
it has little impart on the flatter parts. The latter behaviour seems to correspond to some
sort of curvature motion. One could expect that it is possible to create an algorithm, which
repeatedly diffuses a set, “recovers” a new set and thereby generates curvature dependent
motion of the boundary. Formal analysis can be done to clarify the intuition given above.

To “diffuse the set” we mean that diffusion is applied to the characteristic function of
the set, χ. The goal is to determine how the set evolves when we diffuse the set. That is,
analyze the diffusion equation

∂χ

∂t
= D∆χ.

Now consider a point, P, of interest on the boundary of the set (see figure 2). Construct a
local polar coordinate system whose origin is at the center of curvature of P. Diffusion of the
set can be written in (r, θ)–coordinates as

∂χ

∂t
=
D

r

∂χ

∂r
+D

∂2χ

∂2r
, (9)

where the term involving ∂2χ
∂θ2

= 0 due to local circular symmetry near P.
In the radial direction (9) is an advection–diffusion equation, with advection velocity

V = D/r. At the point P the radius r is equal to the radius of curvature ρ, so V = Dκ
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Figure 2: A point P on the boundary of a set (shaded gray region) and the circle of curvature
at P.

where κ = 1/ρ is the curvature. Hence the effect of diffusing the set is to move the boundary
radially at speed Dκ, while simultaneously diffusing χ radially. The diffusion does not affect
the motion of the χ = 1/2 level set; the χ = 1/2 level set only moves radially with the
advection velocity. Diffusion will therefore generate mean curvature motion at the χ = 1/2
level set. One must ensure to redefine a new set before the local analysis breaks down. The
new set is taken to have χ = 1/2 as its boundary and diffusion is repeated to generate new
motion.

The above analysis suggest algorithm 1 for evolving an intial curve σ. The only parameter

Algorithm 1 : Diffusion Generated Curvature Motion

1: Define a set with boundary σ and characteristic function χ
2: Determine χ(τ) at time τ from

∂χ

∂t
= D∆χ,

∂χ

∂~n
= 0 on Ω

3: Define the new characteristic function as

χ =

{
1 if χ(τ) ≥ 1/2,
0 if χ(τ) < 1/2,

4: Define σ as the boundary of χ.
5: Repeat steps 2-4.

to be determined is the time step τ. The step size τ must be short enough for the local analysis
about to hold, but long enough for the boundary curve to move at least one spatial grid.
The local analysis breaks down when information travels on the order of the local radius of
curvature ρ. Therefore the requirement on the time step τ is

ρ

h
� τD

h2
�
(ρ
h

)2

. (10)

Nathan King 7



APMA 935 Grayscale Segmentation

One can see that the basic idea of the MBO method is to alternate the solution of
diffusion with thresholding. The MBO method can be phrased in terms of another well known
technique for approximating mean curvature motion. The Allen–Cahn equation (sometimes
referred to as the phase field method) can be used to interpret the MBO method. In the
following formulation the MBO method resembles the Esedoḡlu–Tsai method. Consider the
equation

It = 2ε∆I − 1

ε
W ′(I), (11)

where W (ξ) : R → R is a double well potential with equidepth wells at 0 and 1. Here we
choose W (ξ) = ξ2(1− ξ)2.

If a time splitting numerical method [8] is applied to (11), then for a time step ∆t > 0
the scheme alternates between two steps. First let v(x) = S∆t(I

n(x)) where S∆t(ξ) is the
solution to

wt = 2ε∆w, w|t=0= ξ

and appropriate boundary conditions. Then set In+1(x) = T∆t(v(x)) is the solution to

wt = −1

ε
W ′(w), w|t=0= v(x).

The second step of the time splitting is a stiff, non–linear ODE, which has two stable solutions
w = 0, w = 1 and one unstable solution at w = 1

2
. The MBO method uses this observation,

for fixed ∆t > 0 and ε→ 0+ the solutions to the ODE can be done by thresholding. That is,
for every point x the value of w converges to one of the stable equilibrium values depending
on which basin of attraction x belongs to

lim
ε→0+

T∆t(ξ) =

{
0 if ξ ∈ (−∞, 1

2
),

1 if ξ ∈ (1
2
,∞).

The above time splitting scheme with this thresholding for the ODE part is the same as
algorithm 1.

2.2.2 Threshold Dynamics for Piecewise Constant Mumford–Shah

Esedoḡlu and Tsai [7] proposed a thresholding scheme inspired by the MBO method. The
scheme approximates the gradient descent flow for the piecewise constant Mumford–Shah
energy (2). To realize the threshold dynamics for the gradient descent flow of (2) consider
a phase-field approximation. The idea is to find a diffuse interface approximation of (2)
to motivate the proposed dynamics (similar to how the Allen–Cahn equation motivates the
MBO method).

The following sequence of energies gives a diffuse interface approximation for (2),

MSε(c1, c2, I) :=

∫
Ω

ε|∇I|2+
1

ε
W (I) + λ[I2(I0 − c1)2 + (1− I)2(I0 − c2)2]dx,

where ε > 0 and W (ξ) = ξ2(1− ξ)2. Variation of the energy MSε(c1, c2, I) with respect to I
provides the gradient descent flow

It = 2ε∆I − 1

ε
W ′(I)− 2λ[I(I0 − c1)2 + (I − 1)(I0 + c2)2]. (12)
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A candidate for threshold dynamics is found by time splitting (12). There are multiple ways
in which (12) can be split. Here we split such that the thresholding step is the same as in
the MBO method.

The time splitting results in a linear heat equation with a forcing term to be solved and
thresholding to either 0 or 1. Explicitly the Esedoḡlu–Tsai method is

1. Let v(x) = Sτ (I
n(x)), where Sτ (I

n(x)) is the solution to

wt = ∆w − λ√
πt

[w(I0 − c1)2 + (w − 1)(I0 − c2)2],

w|t=0= In(x),

∂w

∂~n
= 0 on ∂Ω,

(13)

at time τ.

2. Set

In+1(x) =

{
0 if v(x) ∈ (−∞, 1

2
],

1 if v(x) ∈ (1
2
,∞).

This method is identical to the MBO method except in the forcing term of the linear heat
equation. Also notice the parameter λ has been scaled in the above method as λ/

√
πt.

Derivation of the scaling of λ is given in [7], which is done so that curvature motion moves
with desired normal velocity.

The constants c1, c2 are determine by the mean of the set where {I(x) = 1} and {I(x) =
0}, respectively. That is,

c1 =

∫
Ω
I(x)I0(x)dx∫
Ω
I(x)dx

and c2 =

∫
Ω

(1− I(x))I0(x)dx∫
Ω

(1− I(x))dx
.

The first step in the Esedoḡlu–Tsai method is a linear diffusion equation, which can be
solved with many efficient numerical methods. Esedoḡlu and Tsai suggest discretizing the
heat equation implicitly and solve the resulting elliptic equation with a fast method (for ex-
ample plain vanilla multigrid). The Chan–Vese method results in PDEs that are singular and
degenerate. Standard fast methods have trouble achieving their expected convergence rates
with the Chan–Vese method. The linear diffusion equation (13) also becomes easier to solve
for small ∆t, since it becomes closer to being diagonally dominant. Numerical implementa-
tion in this paper does not utilize the most efficient techniques for either method. Therefore
efficiency of each method will not be investigated in depth here. Numerical methods used
here are described next in section 3.

3 Numerical Results

Some numerical experiments for different images are given here. Four different test images
are used to compare the relative merits of the Chan–Vese method and Esedoḡlu–Tsai method.
The parameter λ is the same for both methods (take λ1 = λ2 = λ for Chan–Vese). Section 3.1
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details the numerics for the Chan–Vese method, while section 3.2 describes numerics for the
Esedoḡlu–Tsai method. Some interesting images are also segmented in the Appendix using
the Esedoḡlu–Tsai method.

3.1 Chan–Vese Method

In practice, the energy and corresponding gradient descent flow for the Chan–Vese method
needs to be regularized. The regularized Heaviside function, denoted Hε, has many possibil-
ities. The most common regularization used is

Hε(z) =


1 if z ≥ ε,
0 if z < −ε,

1
2

[
1 + z

ε
+ 1

π
sin
(
πz
ε

)]
if |z|≤ ε,

(14)

however another choice for Hε is found more useful in [6]. The regularization of H used by
Chan and Vese is

Hε(z) =
1

2

[
1 +

2

π
arctan

(z
ε

)]
, (15)

and the Dirac delta is then given by δε(z) = d
dz
Hε(z). Both regularizations converge to the

true H and δ0 as ε→ 0.
The energy to be minimized is however non–convex, which allows many local minima.

The energy is the regularized version of (2.1) given by

Fε(c1, c2, φ) := µ

∫
Ω

δε(φ(x))|∇φ(x)| dx + λ1

∫
Ω

|I0(x)− c1|2Hε(φ(x)) dx,

+ λ2

∫
Ω

|I0(x)− c2|2(1−Hε(φ(x))) dx.

The common regularization (14) tends to find local minima, while the regularization (15)
tends to find a global minimizer. Equation (15) can find a global minimizer since it is non–
compactly supported, which gives Euler–Lagrange equations that act globally. This allows
the model to detect interior contours or contours far from the initial contour.

The regularization of the gradient descent flow is

∂φ

∂t
= δε(φ)

[
µ ∇ ·

(
∇φ
|∇φ|

)
− λ1(I0 − c1)2 + λ2(I0 − c2)2

]
= 0 in (0,∞)× Ω,

φ(0,x) = φ0(x) in Ω,

∂φ

∂~n
= 0 on ∂Ω

(16)

and is discretized as follows. In 2D let x = (x, y), denote the spatial step size by h and ∆t
as the time step size. The grid points (xi, yj) = (ih, jh), 1 ≤ i ≤ M and 1 ≤ j ≤ N, and
time is partitioned as tn = n∆t. The forward and backward finite differences are defined as

∆x
−φi,j = φi,j − φi−1,j, ∆x

+φi+1,j = φi,j − φi,j,
∆y
−φi,j = φi,j − φi,j−1, ∆y

+φi,j+1 = φi,j − φi,j.
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Approximate φ(t, x, y) at tn, xi and yj as φni,j ≈ φ(n∆t, ih, jh), with n ≥ 0 and φ0 = φ0

is the initial contour. At the n-th step of the algorithm, given φn from the previous step, we
compute c1(φn) and c2(φn). The level set function φn+1 at tn+1 is then computed from the
following discretization of (16)

φn+1
i,j − φni,j

∆t
= δε(φ

n
i,j)

[
µ

h2
∆x
−

 ∆x
+φ

n+1
i,j√

(∆x
+φ

n
i,j)

2/(h)2 + (φni,j+1 − φni,j−1)2/(2h)2


+
µ

h2
∆y
−

 ∆y
+φ

n+1
i,j√

(φni+1,j − φni−1,j)
2/(2h)2 + (∆y

+φ
n
i,j)

2/(h)2


−λ1((I0)i,j − c1(φn))2 − λ2((I0)i,j − c2(φn))2

]
.

For superior efficiency here we do not solve the gradient descent flow (16). Instead a
Gauss–Seidel iteration was applied directly to the corresponding Euler–Lagrange equation
discretization

0 = −δε(φni,j)

[
µ

h2
∆x
−

 ∆x
+φ

n+1
i,j√

(∆x
+φ

n
i,j)

2/(h)2 + (φni,j+1 − φni,j−1)2/(2h)2


+
µ

h2
∆y
−

 ∆y
+φ

n+1
i,j√

(φni+1,j − φni−1,j)
2/(2h)2 + (∆y

+φ
n
i,j)

2/(h)2


−λ1((I0)i,j − c1(φn))2 − λ2((I0)i,j − c2(φn))2

]
.

The Chan–Vese method is experimented on two artificial images and two real images.
In all experiments we take µ = 1, λ1 = λ2 = λ, h = 1 and initial zero level set of a circle
with radius R0. For the regularization of the Dirac delta and Heavyside function ε = 1. Only
the parameter λ is varied for each test image. Initial image I0 is given with binary images
of the segmentation at different number of iterations. The exact values of λ and φ0 used
will be given in each figure caption. Computation time (CT) is also given in the captions
and is computed using MATLAB’s tic/toc command. This command is not overly accurate,
however it is used for comparison purposes.

Figure 3a is a binary image of three shapes, a triangle, donut and rectangle with an ellipse
removed. Gaussian noise, with mean zero and variance 0.008, and blurring was added. The
Chan–Vese method quickly wraps around the shapes after one iteration (figure 3b). The
edges are bumpy due to the noise in the image and are smoothed slightly after another
iteration in figure 3c.

Figure 4a is another binary image, this time consisting of just lines. The contours from
the Chan–Vese method wrap around the objects in just one iteration again. The lines are
completely enclosed by the contours in figure 4b, producing the binary segmentation image.
There is a small dot in the center of figure 4b where the initial contour resides and two other
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In itial Image Chan-Vese Segmentation Chan-Vese Segmentation

a) b) c)

Figure 3: A 249 × 249 grayscale image of three noisy and blurred shapes in a). Images b)
and c) are segmentations after one and two iterations, respectively. Parameter λ = 0.0001,
initial contour φ0(x, y) = −

√
(x− 124.5)2 + (y − 124.5)2 + 10 and CT = 4.87 s.

dots near the quadrilateral. After one more iteration in figure 4c the center dot has shrunk
to be nearly unnoticeable and the other two have disappeared.

Figure 5a is a grayscale image of a cluster of stars. The Chan–Vese method in this case
takes many more iterations to obtain the segmentation. Figure 5b is after the first iteration
and there is no noticeable change from the initial guess. It then takes until the fifth iteration
for stars far from the center to be segmented (figure 5c). After seven iterations, in figure 5d,
the middle star cluster begins to be detailed. In figure 5e the entire star cluster can be seen
after nine iterations and more details are added after eleven iterations (figure 5f).

The final image, in figure 6a, is that of a camera man seen in many image processing
tests. The Chan–Vese method obtains a good segmentation after one iteration in figure 6b.
The method then continues to pick up on noise–like darkness in the grass in figures 6c and
d. The method is impressive in the amount of detail of the camera and the facial region.
Comparison of segmentation, for each image here, using the Esedoḡlu–Tsai method will be
given next.

3.2 Threshold Dynamics

Since the Esedoḡlu–Tsai method was inspired by the Merriman–Bence–Osher method, some
numerical results are given first. Once the behaviour of the MBO method is realized it is
easier to understand the Esedoḡlu–Tsai method. Numerical experiments of the same images
in section 3.1 are given thereafter for the Esedoḡlu–Tsai method.

3.2.1 Merriman–Bence–Osher Method

We partition x and t the same as the Chan–Vese method. In 2D let x = (x, y), denote the
spatial step size by h and ∆t gives the time step size. For grid points (xi, yj) = (ih, jh),
1 ≤ i ≤ M and 1 ≤ j ≤ N, and for time tn = n∆t. That is, the computed value χni,j is an
approximation to χ(tn, xi, yj). The MBO method given in algorithm 1 is implemented with
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In itial Image Chan-Vese Segmentation Chan-Vese Segmentation

a) b) c)

Figure 4: A 256 × 256 binary image of different shapes created from lines in a). Images
b) and c) are segmentations after one and two iterations, respectively. Parameter value
λ = 0.00002, initial contour φ0(x, y) = −

√
(x− 128)2 + (y − 128)2 + 2 and CT = 5.32 s.

In itial Image Chan-Vese Segmentation Chan-Vese Segmentation

a) b) c)
Chan-Vese Segmentation Chan-Vese Segmentation Chan-Vese Segmentation

d) e) f)

Figure 5: A 350 × 350 grayscale image of a star cluster in a). Images from b)–f) are after
one, five, seven, nine and eleven iterations, respectively. Parameter value λ = 0.00005,
initial contour φ0(x, y) = −

√
(x− 175)2 + (y − 175)2 + 10 and CT = 41.01 s. Source:

www.astro.caltech.edu/palomar/images/jarrett M3 med.jpg
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In itial Image Chan-Vese Segmentation

a) b)

Chan-Vese Segmentation Chan-Vese Segmentation

c) d)

Figure 6: A 256 × 256 grayscale image of a camera man in a). Images b), c) and d)
are segmentations after one, two and three iterations, respectively. Parameter value λ =
0.00025, initial contour φ0(x, y) = −

√
(x− 128)2 + (y − 128)2 +10 and CT = 9.07 s. Source:

www.math.ucla.edu/∼yanovsky/Research/IPCG/Deblurring/ROF/cameraman clean.jpg
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the Crank–Nicolson method for the diffusion equation portion. The simple thresholding step
is done after diffusion is performed up to a time τ, satisfying (10).

The Crank–Nicolson method is second order in time and space. At the boundary ∂Ω, a
second order centered difference scheme is used to incorporate zero flux conditions. That is
we approximate ∂χ/∂~n = 0 on ∂Ω as

∂χni,1
∂nx

=
χni,2 − χni,0

2h
= 0,

χni,N
∂nx

=
χni,N+1 − χni,N−1

2h
= 0, for all i = 1, . . . ,M (17)

and

∂χn1,j
∂ny

=
χn2,j − χn0,j

2h
= 0,

χnM,j

∂ny
=
χnM+1,j − χnM−1,j

2h
= 0, for all j = 1, . . . , N. (18)

The values χni,0, χ
n
i,N+1, χ

n
0,j and χnM+1,j are ghost points.

For exposition we assume a square domain Ω, i.e. M = N. The Crank–Nicolson method,
with zero flux BCs approximated using (17) and (18), can be written as[

IN2 − ∆t

2h2
W

]
~χn+1 =

[
IN2 +

∆t

2h2
W

]
~χn, (19)

where ~χn (or ~χn+1) is a reshaped N2 × 1 vector of χni,j values. The vector ~χn (or ~χn+1) can
be constructed by stacking columns of χn (or χn+1). The matrix Iν is the ν × ν identity
matrix and W is an N2 ×N2 block tridiagonal matrix

W =


D 2IN
IN D IN

. . . . . . . . .

IN D IN
2IN D

 with D =


−4 2
1 −4 1

. . . . . . . . .

1 −4 1
2 −4

 , (20)

where D is an N ×N matrix. The matrix equation (19) is solved using MATLAB’s built-in
“backslash” command here. Note that all N2 × N2 components are not stored, since all
matrices Iν , W and D are sparse.

To test this method we examine how a circle evolves by mean curvature motion. The
evolution of the circle moves with speed κ towards the center. The ordinary differential
equation dr/dt = −1/r can be used to determine the exact solution as

r(t) =

√
1

16
− 2t.

Figure 7 shows a circle of initial radius R0 = 0.25 shrink by mean curvature motion. The
circle evolves until T = 3/256 with four equal time steps of ∆t = T/4. The exact radius at
time t = 3/256 is r =

√
5/128.

The evolution of the circle was computed for different time and space step sizes. Table 1
gives the image resolution, number of time steps taken, relative error in the radius and the
order of convergence. The image domain is [0, 1] × [0, 1] and thus the resolution relates to
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R0 =0.250 r =0.234 r =0.219 r =0.203 r =0.188

a) b) c) d) e)

Figure 7: Circle shrinking by mean curvature motion until T = 3/256. Initial radius as
R0 = 0.25 and ∆t = T/4.

Resolution # of time steps Relative error Order
32× 32 2 0.2094 —
64× 64 4 0.1304 0.684
128× 128 8 0.0908 0.521
256× 256 16 0.0513 0.824
512× 512 32 0.0316 0.699

Table 1: Relative errors in the radius of circle evolving by mean curvature motion. Results are
given for five different resolutions and increasing number of time steps. Order of convergence
is also given in the last column.

the space step size. The resolution and time step size are doubled together and a order of
convergence near 1 is seen. The resolution and time step size have to change together to
ensure (10) is satisfied. When ∆t to too small compared to h, the circle does not move.
When ∆t is too large compared to h, the boundary of the circle becomes sporadic and circle
does not shrink as much.

It is also know that motion by mean curvature causes Gaussian noise to disappear,
straightens edges and rounds corners. Figure 8 shows the MBO method used on a square
that has wavy sides, sharp corners and Gaussian noise added. Noise disappears after the
first time step in figure 8b. In figure 8e, the wavy sides are completely straightened after
four time steps. The corners round more and more throughout all the time steps.

a) b) c) d) e)

Figure 8: A 256×256 image in a) of a square with two wavy sides and Gaussian noise added.
Images b)–e) show mean curvature motion with the MBO method using ∆t = 20.
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3.2.2 Esedoḡlu–Tsai Method

The same notation for numerics of the Chan–Vese method and MBO method apply here.
The diffusion part (13) of the Esedoḡlu–Tsai method can be written as

wt = ∆w − A(x)w +B(x),

with

A(x) =
λ√
π∆t

[(I0(x)− c1)2 + (I0(x)− c2)2] and B(x) =
λ√
π∆t

(I0(x)− c2)2.

Here we use the implicit discretization in time of

wn+1 − wn

∆t
= ∆wn+1 − Cwn+1 + (C − A(x))wn +B(x),

where C is a constant chosen to be large enough compared to A(x). In all our numerical
experiments the value of C was taken to be C = λ√

π∆t
mean(I0(x)).

The Laplacian of w is discretized using the five point Laplacian. Zero flux boundary
conditions are incorporated the same as the MBO method with (17) and (18). The full
discretization in space and time can then be written as the system of linear equations

[(1 + ∆t C)IN2 +W ]wn+1 = [(1 + ∆t C)IN2 ]wn + ~Awn + ~B, (21)

where W is defined in (20). The vectors wn, wn+1, ~A and ~B are of size N2× 1 reshaped like
χn in (19). The matrix equation (21) is solved using MATLAB’s built-in solver. Note that
the the diffusion equation is solved until time tn = τ. The thresholding step is then applied
to the approximate solution of w(τ,x). That is, thresholding does not have to be done after
every diffusion step.

Experiments here are done on the same four images as in section 3.1. Identical parameters
values λ are taken. The value of µ = 1 in the Chan–Vese method was taken since the
corresponding term in the Esedoḡlu–Tsai method has no parameter. In all experiments
h = 1 and ∆t is a multiple of h2. Multiple diffusion steps can be taken for each thresholding
step of ∆t. Figure 10a is the only image that uses multiple diffusion steps; three diffusion
steps of size ∆t/3 are taken. Initial segmentation guess is a circle centered in the image
with radius R0. Inside the circle the intensity is one and outside it is zero. Initial image I0

is shown with binary images of the segmentation at different time steps. The exact values
of λ, R0 and computation time are given in each figure caption.

Figure 9a is the binary image of three shapes with Gaussian noise and blurring added.
Similar to the result of Chan–Vese, after one time step the method reveals the three shapes
with bumpy edges (figure 9b). Then after one more time step in figure 9c the edges are
smoothed slightly. Comparing figure 9 with the Chan–Vese result, in figure 3, it can be seen
that the Esedoḡlu–Tsai method produces less jagged edges but slightly more round corners.

Figure 10a is the binary image of shapes constructed from lines. The Esedoḡlu–Tsai
method gives a good segmentation after just one time step in figure 10b. It can be seen
in figure 10b however that the method is not as good as the Chan–Vese method in corner
regions. It was also noticed that the method becomes worse if segmentation is continued
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In itial Image Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

a) b) c)

Figure 9: A 249×249 binary image of three noisy and blurred shapes in a). Images b) and c)
are segmentations after one and two time steps, respectively. Parameter λ = 0.0001, initial
guess radius R0 = 10, time step size ∆t = h2 and CT = 2.32 s.

In itial Image Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

a) b) c)

Figure 10: A 256 × 256 binary image of different shapes created from lines in a). Images
b) and c) are segmentations after one and five time steps, respectively. Parameter value
λ = 0.00002, initial guess radius R0 = 2, time step size ∆t = h2 and diffusion done with
three steps of ∆t/3. Computation time for the desired segmentation in b) is CT = 2.61 s.
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In itial Image Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

a) b) c)
Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

d) e) f)

Figure 11: A 350 × 350 grayscale image of a star cluster in a). Images from b)–
f) are after one to five time steps, respectively. Parameter value λ = 0.00005, ini-
tial guess radius R0 = 10, time step size ∆t = 0.1h2 and CT = 6.40 s. Source:
www.astro.caltech.edu/palomar/images/jarrett M3 med.jpg.

for longer. After five time steps, figure 10c shows that the method actually increases the
thickness of the lines. It seems that the Esedoḡlu–Tsai method continues diffusing after an
appropriate segmentation is found.

Figure 11a is the grayscale image of a star cluster. The Esedoḡlu–Tsai method obtains
a reasonable segmentation much faster than the Chan–Vese method. After just one time
step the star cluster and stars out further are segmented (in figure 11b). The method then
continues to obtain more of the star cluster in figure 11c to figure 11f. The segmentation is
not as detailed as the Chan–Vese method for the star cluster.

The final test image, figure 12a, is the grayscale image of a camera man. After one time
step the shape of the camera man’s body and tripod is apparent, but the facial area and
background not segmented correctly (see figure 12b). After another time step in figure 12c
the segmentation is satisfactory. One more time step and more details are show in figure 12d.
Comparing to the Chan–Vese segmentation (figure 6) it can be seen that many details are
blurred together when using the Esedoḡlu–Tsai method. The Chan–Vese method only took
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In itial Image Esedoglu-Tsai Segmentation

a) b)

Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

c) d)

Figure 12: A 256 × 256 grayscale image of a camera man in a). Images b), c) and d)
are segmentations after one, two and three time steps, respectively. Parameter value λ =
0.00025, initial guess radius R0 = 10, time step size ∆t = 0.8h2 and CT = 4.26 s. Source:
www.math.ucla.edu/∼yanovsky/Research/IPCG/Deblurring/ROF/cameraman clean.jpg.
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one iteration to determine an appropriate segmentation, however the Esedoḡlu–Tsai method
has less than half the total computation time.

4 Discussion

Image segmentation is an important initial step in applications of object recognition and
interpretation [9]. In this project we explored two types of segmentation methods based on
the piecewise constant Mumford–Shah energy [4]. The Chan–Vese method used a level set
approach, while the Esedoḡlu–Tsai method implemented threshold dynamics. Both methods
return similar segmentations but have certain distinct characteristics. Note that all images
here have approximately piecewise constant regions. Both methods would have difficulty for
objects with intensities that vary drastically.

The Chan–Vese method allows for easy access to edges of the objects since it uses a level
set method. The Esedoḡlu–Tsai method would require additional processing to determine
the boundary of the binary segmentation. Dependent on the application object edges may be
more important than entire object, so Chan–Vese is probably desired. Chan–Vese method
seems to segments more details while Esedoḡlu–Tsai method tends to produce smoother
edges. That is, the Esedoḡlu–Tsai method tends to produce segmentations that look more
like a cartoon. It is also difficult to determine appropriate time step sizes for the Esedoḡlu–
Tsai method. Like the MBO method, diffusion can become stuck if the time step is too small
or give inaccurate results if the time step is too large.

The Esedoḡlu–Tsai method has a faster computation time and usually has adequate
segmentation after the first time step. The Chan–Vese method takes more than double
the computation time for examples in section 3. Here the Esedoḡlu–Tsai method is imple-
mented using a simple method and still has smaller computation times than the Chan–Vese
method. The Esedoḡlu–Tsai method requires a relatively simple PDE to be solve, therefore
is amendable to even faster numerical techniques. The Esedoḡlu–Tsai method is therefore
more desirable in industrial applications where image sizes are large.
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Appendix

Here the Esedoḡlu–Tsai method was used on more real images. These tests were done just
for curiosity of possible real world applications. The first example, given in figure 13, shows
how the shape of a gun could be detected using segmentation. We see that segmentation
could be used to help repair smudged fingerprints in figure 14. After 2∆t, in figure 14b,
the smudged section can be identified. Further segmentation can then be used to fill in
the smudged section (figure 14c). Figure 15 shows how segmentation could help determine
licence plate numbers. The last example, in figure 16, is a fingerprint with a watermark over
the image. Segmentation does a decent job in removing the watermark. This could be used
as a quick method to remove a watermark if complete removable is unnecessary.

In itial Image Esedoglu-Tsai Segmentation

a) b)

Figure 13: A 351 × 351 grayscale image of a boy with a gun in a). Seg-
mentation in b) is after 3 times steps of ∆t = 0.005h2 with h = 1. Pa-
rameter value λ = 0.000008 and initial guess radius of R0 = 1. Source:
http://news.bbcimg.co.uk/media/images/61719000/jpg/ 61719840 82039610.jpg.

In itial Image Esedoglu-Tsai Segmentation Esedoglu-Tsai Segmentation

a) b) c)

Figure 14: A 508 × 508 grayscale image of a smudged fingerprint in a). Segmenta-
tion in b) and c) are after one and eight time steps ∆t = 0.6h2 with h = 1, re-
spectively. Parameter value λ = 0.000095 and initial guess radius R0 = 10. Source:
http://shs2.westport.k12.ct.us/forensics/04-fingerprints/arch sample.gif
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In itial Image Esedoglu-Tsai Segmentation

a) b)

Figure 15: A 256 × 256 grayscale image in a) of two licence plates. Segmentation in b) is
after 6 times steps of ∆t = 0.7h2 with h = 1. Parameter value λ = 0.0008 and initial guess
radius of R0 = 1. Source: created from two separate licence plate images on google.

In itial Image Esedoglu-Tsai Segmentation

a) b)

Figure 16: A 450×450 grayscale image of a fingerprint with a watermark in a). Segmentation
in b) is after 2 times steps of ∆t = 0.5h2 with h = 1. Parameter value λ = 0.01 and initial
guess radius of R0 = 200. Source: http://thumbs.dreamstime.com/x/real-thumb-fingerprint-
pattern-isolated-26587196.jpg
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