
Closest Point Geometry Processing:
Extensions and Applications of

the Closest Point Method

for Geometric Problems in Computer Graphics

by

Nathan David King

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2025

© Nathan David King 2025

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Misha Kazhdan
Professor, Department of Computer Science
Johns Hopkins University

Supervisors: Christopher Batty
Professor, School of Computer Science
University of Waterloo

Steven Ruuth
Professor, Department of Mathematics
Simon Fraser University

Internal Members: Toshiya Hachisuka
Associate Professor, School of Computer Science
University of Waterloo

Justin Wan
Professor, School of Computer Science
University of Waterloo

Internal-External Member: Sander Rhebergen
Associate Professor, Department of Applied Mathematics
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis consists of research material written for publication where Nathan King was
the lead author (except second author for Chapter 5) under the supervision of Dr. Christo-
pher Batty and Dr. Steven Ruuth and in collaboration with Dr. Haozhe Su, Dr. Mridul
Aanjaneya, Ryusuke Sugimoto, and Dr. Toshiya Hachisuka.

Research presented in Chapters 3–4 (excluding Section 3.4) largely consists of contributions
and results sections adapted from [71], as well as sole-authored content by Nathan King.
The core ideas to treat interior boundary conditions were developed and implemented by
Nathan King under the supervision of Dr. Christopher Batty and Dr. Steven Ruuth. The
ideas of using a sparse grid data structure and not building the full matrix system in our
linear system solver were proposed by Dr. Christopher Batty and Nathan King, respec-
tively, but implemented by Dr. Haozhe Su under the supervision of Dr. Mridul Aanjaneya.
Section 3.4 consists of sole-authored content by Nathan King under the supervision of Dr.
Christopher Batty and Dr. Steven Ruuth.

Chapter 5 largely consists of contributions and results sections adapted from [164] by
Ryusuke Sugimoto and Nathan King under the supervision of Dr. Christopher Batty and
Dr. Toshiya Hachisuka. The idea of combining Monte Carlo methods and the closest point
method was proposed by Nathan King. Ryusuke Sugimoto proposed and implemented the
core method in Algorithm 2, while Nathan King developed its theoretical understanding
presented in Section 5.1.2. Both Nathan King and Ryusuke Sugimoto worked collabora-
tively on the local feature size estimation presented in Section 5.2.1.

Research presented in Chapter 6 largely consists of work adapted from [70] and extended
sole-authored content by Nathan King under the supervision of Dr. Christopher Batty
and Dr. Steven Ruuth. Section 6.1 consists of content adapted from [72] by Nathan King
under the supervision of Dr. Steven Ruuth. Chapters 1, 2, and 7 are a combination of
sole-authored content by Nathan King and material from [71] adapted to the structure of
a PhD thesis.

iv

Abstract

This thesis develops theoretical aspects and numerical methods for solving partial differen-
tial equations (PDEs) posed on any object for which closest point queries can be evaluated.
In geometry processing (and computer graphics in general), objects are represented on a
computer in many different ways. Requiring only closest point queries allows the methods
we develop to be used with nearly any representation. Objects can be manifold or nonman-
ifold, open or closed, orientable or not, and of any codimension or even mixed codimension.
Our work focuses on solving PDEs on manifolds using the closest point method (CPM),
although some nonmanifold examples are also included.

We develop fundamental extensions of CPM to enable its use for the first time with
many applications in geometry processing. Two major impediments stood in our way:
the complexity of manifolds commonly found in geometry processing and the inability
to impose interior boundary conditions (IBCs) with CPM. We first develop a runtime and
memory-efficient implementation of the grid-based CPM that allows the treatment of highly
complex manifolds (involving tens of millions of degrees of freedom) and avoids the need for
GPU or distributed memory hardware. We develop a linear system solver that can improve
both memory and runtime efficiency by up to 2× and 41×, respectively. We further im-
prove runtime by up to 17× with a novel spatial adaptivity framework. We then develop a
general framework for IBC enforcement that also only requires closest point queries, which
finally allows for many geometry processing applications to be performed with CPM. We
implicitly partition the embedding space across (extended) interior boundaries. CPM’s
finite difference and interpolation stencils are adapted to respect this partition while pre-
serving up to second-order accuracy. We show that our IBC treatment provides superior
accuracy and handles more general BCs than the only existing method [7].

We deviate from the common grid-based CPM and further develop a discretization-
free CPM by extending a Monte Carlo method to surface PDEs. This enables CPM to
enjoy common benefits of Monte Carlo methods, e.g., localized solutions, which are useful
for view-dependent applications. Finally, we introduce an algorithm to compute geodesic
paths that does not even require a manifold PDE; only heat flow on a 1D line and closest
point queries are required. Our method is more general, robust, and always faster (up to
1000×) than the state-of-the-art for general representations [193]. Our method can be up
to 100,000× faster (with high-resolution meshes) or slower (with low-resolution meshes)
than the state-of-the-art in terms of runtime [152]. Convergence studies on example PDEs
with analytical solutions are given throughout. We further demonstrate the effectiveness
of our work for applications from geometry processing, including diffusion curves, vector
field design, geodesic distance and paths, harmonic maps, and reaction-diffusion textures.

v

Acknowledgements

This work would not have been possible without the support of many people in both
my professional and personal life. First and foremost, I am grateful for my journey, which
was a privilege that is not afforded to many in this world.

My supervisors, Christopher Batty and Steve Ruuth, undoubtedly provided a terrific
environment for my success with their encouragement, shared enthusiasm, and knowledge.
Thank you both for allowing space for my curiosity. Thank you, Christopher, for your vast
knowledge of the field of computer graphics, your helpful ideas, and for seeing the potential
in my proposed closest point method research from the beginning. Thank you, Steve, for
creating the closest point method, for your helpful ideas, and for helping keep my math-
ematics formal. Moreover, I am sincerely grateful to both of you for your understanding
and support during personal difficulties. I also thank my undergraduate supervisor, Ronald
Haynes, for sparking my interest in numerical methods and Joseph Teran for inspiring me
to pursue my PhD in computer graphics with his talk on snow simulation.

I am grateful for the amazing collaborators I was fortunate enough to work with dur-
ing my PhD. Thank you Haozhe Su, Ryusuke Sugimoto, Mridul Aanjaneya, and Toshiya
Hachisuka, for your enthusiasm, for being great team members, and for investing your time
and energy.

Thank you to my colleagues and friends in the Computational Motion Group who have
made my PhD experience more enjoyable: JC Chang, Brooke Dolny, Ryan Goldade, Yu
Gu, Rikin Gurditta, Michael Honke, Clara Kim, Jade Marcoux-Ouellet, Sina Nabizadeh,
Tümay Özdemir, Jonathan Panuelos, Ryusuke Sugimoto, Joel Wretborn, and many more.

I am thankful for the real-world experience I gained through my internships at Meta.
I was able to work with and alongside many brilliant researchers on intriguing projects
for virtual reality, from which I learned a lot. Thank you, Ryan Goldade and Hsaio-yu
Chen, for your mentorship, as well as Breannan Smith, Takaaki Shiratori, Tuur Stuyck,
and Doug Roble, for being great collaborators. Thank you to all the others who made the
internships fun, including Wesley Chang, Egor Larionov, Sunmin Lee, Yifei Li, and Joy
Zhang.

Thank you to the friends I made at conferences for the interesting discussions and
amazing experiences. These conferences recharged me when lost in the depth of my own
research by talking with other researchers with such enthusiasm for their work and com-
puter graphics in general. Thank you Noam Aigerman, Otman Benchekroun, Honglin
Chen, Dave Levin (specifically for karaoke in Japan!), Derek Liu, Sina Nabizadeh, Yuta

vi

Noma, Silvia Sellán, Nick Sharp, Rohan Sawhney, and others. A special thanks to Ryusuke
Sugimoto for the long discussions we had way past my usual bedtime while sharing hotels.

Thanks to those who helped during the personal difficulties that I faced during my PhD:
Christopher Batty, Rook Bridson, Wesley Chang, Hsaio-yu Chen, Ryan Goldade, Yifei Li,
Doug Roble, Steve Ruuth, Tuur Stuyck, the medical teams, my personal trainer Sheldon,
my recreational hockey friends, and my friends and family. My friends and family have
supported me tremendously through the ups and downs of the overall PhD, even though
they did not always understand what I was doing. A big thank you to my friends Kristian,
Josh, Adam, Don, Ray, Levi, and Rey, as well as my parents, Rupert and Donna, and
brothers Braderick and Matthew.

To Jillian, thank you for the support you were able to provide for many years.

vii

Dedication

To those who take the path less travelled,
the ones with the determination to endure hardships,
the ones with the passion to persevere,
the ones who strive to make a difference in the world.

viii

Table of Contents

Examining Committee ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vi

Dedication viii

List of Figures xiii

List of Tables xx

List of Abbreviations xxi

List of Symbols xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 4

1.3 Contributions . 6

ix

2 Closest Point Method Review 8

2.1 CPM Basics . 10

2.2 Variants of the Closest Point Method . 12

2.2.1 Ruuth and Merriman [138] Approach 13

2.2.2 Macdonald and Ruuth [88] Approach 14

2.2.3 Macdonald, Brandman, and Ruuth [89] Approach 14

2.2.4 Guaranteeing Solutions Constant in the Normal Direction 15

3 Scalability and Spatial Adaptivity 17

3.1 Discrete Setting of the Grid-Based CPM 17

3.2 Scalability . 20

3.3 Linear System Solver . 25

3.4 Spatial Adaptivity . 28

3.4.1 Continuous Setting . 29

3.4.2 Discrete Setting . 31

3.4.3 Numerical Results . 32

3.5 Summary and Future Work . 45

4 Interior Boundary Conditions 47

4.1 Exterior Boundary Conditions for Open Manifolds 49

4.2 Interior Boundary Conditions . 51

4.2.1 Adding Interior Boundary Degrees of freedom.s (DOFs) 52

4.2.2 S⊥ Crossing Test . 55

4.2.3 Stencil Modifications . 56

4.2.4 Open Curves C in R3 . 59

4.2.5 Points C in R3 . 59

4.2.6 Localizing Computation Near C . 60

4.2.7 Improving Robustness of S⊥ Crossing Test 60

x

4.2.8 A Nearest Point Approach for Dirichlet IBCs 62

4.3 Convergence Studies . 62

4.3.1 Poisson Equation with Discontinuous Solution 62

4.3.2 Heat Equation . 63

4.3.3 Screened-Poisson Equation . 64

4.3.4 Different CPM approaches vs. a Mesh-Based Method 64

4.4 Applications . 69

4.4.1 Diffusion Curves . 71

4.4.2 Geodesic Distance . 75

4.4.3 Vector Field Design . 79

4.4.4 Harmonic Maps . 83

4.4.5 Reaction-Diffusion Textures . 85

4.5 Summary and Future Work . 88

5 Monte Carlo Closest Point Method 89

5.1 Background . 90

5.1.1 Walk-on-Spheres . 90

5.1.2 Surface PDEs and Closest Point Extension 92

5.2 Method . 94

5.2.1 Local Feature Size Estimation . 97

5.2.2 Distance to Extended Dirichlet Boundaries 102

5.3 Convergence Studies . 104

5.4 Applications . 108

5.4.1 Diffusion Curves . 108

5.4.2 Geodesic Distance . 110

5.5 Summary and Future Work . 110

xi

6 Geodesic Paths 114

6.1 Harmonic Maps . 116

6.2 Geodesic Paths via Harmonic Maps . 118

6.2.1 Discretization . 119

6.2.2 Stopping Criteria . 119

6.2.3 Initial Path Construction . 120

6.3 Comparison to Yuan et al. [193] . 124

6.4 Numerical Results . 126

6.4.1 Path Shortening Comparison . 126

6.4.2 Full Pipeline Comparison . 130

6.5 Summary and Future Work . 132

7 Future Work for CPM 135

7.1 Spatial Grid Resolution . 136

7.2 Additional PDEs, CPM Convergence, and Manifold Smoothness 138

7.3 Neural Representation . 140

7.4 Conclusion . 141

References 143

APPENDICES 162

A Closest Point Computation 163

xii

List of Figures

1.1 Discrete object representations that support closest point queries (bottom
right) include parametrizations (top left), meshes (top middle), point clouds
(top right), and level sets (bottom left). 2

2.1 Left: A tube N (S) (grey) around a 1D curve S (coloured) embedded in R2.
Right: A visualization of u ∈ N (S) resulting from the Closest point. (CP)
extension of uS ∈ S. 11

3.1 The tube radius required for CPM calculated using the interpolation stencil
(orange) for cpS(xk) (white) and Finite difference. (FD) stencil (red). . . . 20

3.2 Top row: Computation time vs. h plots for the heat equation (4.14) with
Dirichlet and zero-Neumann interior BCs with four solver options. Bottom
row: Memory vs. h plots for the same problems and solvers. Our solver
(orange) achieves the lowest computation time and memory costs. 27

3.3 Three overlapping adaptive tubes N (Sm) (grey and red) for a spiral curve
S (blue). The boundary subsets N (∂Sm) are coloured darker and are the
regions past the green lines orthogonal to S at the boundaries of Sm. . . . 29

3.4 Data uS on the manifold (blue curve) is CP extended to a point x ∈ N (S2)
(black) by assigning the value of uS at cpS1(x) (blue point) instead of the
value at cp∂S2(x) (white). Similarly for x ∈ N (∂S1) the value of uS at
cpS2(x) is CP extended to x instead of the value at cp∂S1(x). 30

3.5 Solution of (3.15) on the arc (coloured) computed using the adaptive tube
with h1 = h3 = 0.025 on Ω(S1) and Ω(S3) (black grid) and h2 = 0.008 on
Ω(S2) (red grid). 33

xiii

3.6 Left: Max-norm error as h2 varies when solving (3.15). The max-norm
is computed from 100 equally spaced points in the θ parameter. Right:
Improvement factor of the adaptive approach compared to the uniform ap-
proaches for LU decomposition time, solve time, and number of DOFs as h2
varies. Timings are average values from 20 trials. 34

3.7 Error in the solution of (3.18) on a hyperbolic spiral using a uniform tube
with h = 0.08 (top row, black) or h = 0.00125 (middle row, black) or an
adaptive tube with varying hm (bottom row, black and red). 37

3.8 Computational tubes used when solving (3.21) on the spiral sheet with the
uniform computational tubes and the adaptive tube. 39

3.9 Numerical solution when solving (3.21) on the spiral sheet with the uniform
computational tubes and the adaptive tube. 40

3.10 Solution errors when solving (3.21) on the spiral sheet with the uniform
computational tubes and the adaptive tube. The error is shown on the spiral
sheet directly (left column) and with the sheet unrolled (right column) and
scaled such that L = W = 1. 41

3.11 Left: Solutions using uniform Ω(S) with different h and an adaptive tube.
Right: Solution differences (top and middle) and the adaptive tube (bottom). 44

4.1 The boundary subset Ω(∂S) (purple points) for a curve S (blue) comprises
those grid points in Ω(S) (black grid) whose closest point is on the boundary
∂S (white point). The points xi ∈ Ω(∂S) are those past the normal manifold
S⊥ (green) based at ∂S. 50

4.2 On the left, a normal manifold S⊥ (green) extends perpendicularly outwards
from a curve C (white) where an IBC is to be applied. On the right, clos-
est points cpS(xi) for xi ∈ Ω(C) (yellow and purple) cannot be globally
partitioned into two disjoint sets by C on a nonorientable S (blue). 52

4.3 A conceptual illustration of our approach to interior boundaries for a point
C (white) on a curve S (blue) in R2. Top row: Duplicated BC DOFs are
generated in the boundary subset Ω(C) around C (thick black grid). Mid-
dle row: The normal manifold S⊥ (green) locally partitions the grid into
two sides (yellow, purple). Bottom row: The modified grid connectivity is
illustrated by warping it into R3. 54

xiv

4.4 For two points x1,x2 ∈ N (S), we can determine if the closest points,
cpS(x1), cpS(x2), lie on opposite sides of C based on their orientations rela-
tive to the corresponding closest points on C, cpC(x1), cpC(x2). 56

4.5 Convergence studies and associated geometries for the model problems in
Sections 4.3.1-4.3.3. The plots show results for our CPM approach using
first (blue) and second (orange) order IBCs, along with lines of slopes 1
(grey, dashed) and 2 (grey, dotted). In (a)-(c) analytical cpS are used, while
(d) and (e) compute cpS from the level-set representation of S. All examples
use analytical cpC. 65

4.6 Triangulations of the Dziuk surface used for testing. Left: Good-quality tri-
angulation, Tg, at its base resolution (a) and after four rounds of refinement
(b). Right: Low-quality triangulation, Tb, also at its base (c) and four times
refined (d) resolutions. 66

4.7 A comparison of CPM vs. the mesh-based cotangent Laplacian for the Pois-
son equation with Dirichlet IBC. Top row: Closed curve C. Middle row:
Open curve C. Bottom row: Point C. 68

4.8 A comparison of CPM with quadratic vs. cubic interpolation stencils for the
heat (top row) and Poisson (bottom row) problems of Figure 4.5 (b) and
(d). Comparable results are achieved, but quadratic is often faster while
cubic typically exhibits more regular convergence. 70

4.9 Colouring a triangulated surface using diffusion curves. 72

4.10 Diffusion curves on a nonmanifold object of mixed codimension. Line seg-
ments connect the torus to the sphere, which are all represented with ana-
lytical cpS . The cpC for the circle on the sphere is computed analytically,
while cpC for the torus knot is computed from a parametrization. 73

4.11 CPM applied to a codimension-zero diffusion curve problem, with the Dirich-
let colour value varying along the white IBC curve. Top row: At an insuffi-
cient grid resolution of h = 0.05 (left), high curvature regions exhibit errors
near the curve’s medial axis (right). Bottom row: A high-resolution grid
with h = 0.005 (left) resolves the artifacts (right). The cpS are computed
analytically and cpC are computed from a parametric representation. . . . 74

4.12 CPM vs. mesh-based methods for geodesic distances to a point on a trian-
gulation of the Dziuk surface. The bottom row shows the rear view of the
surface. Consistent results are observed. 77

xv

4.13 Geodesic distance to a polyline curve (black) visualized on the “DecoTetra-
hedron” level-set surface computed using CPM with h = 0.025. The closest
points themselves are directly rendered. 78

4.14 Geodesic distance to a parametric curve (black) on an analytical closest
point surface. 79

4.15 Our CPM approach vs. the vector heat method when designing a vector
field using three user-prescribed directions (white) on the Dziuk surface.
The resultant vector field (black) is consistent away from the cut locus of
the IBC points, since the dot product between the vectors produced by each
method is close to 1 (colour scale goes from −1 for purple to 1 for yellow). 81

4.16 Vector field design on a triangulation of a Möbius strip, which is an open
and nonorientable surface. 82

4.17 Vector field design on a parametric surface of revolution, with Dirichlet IBCs
on a parametric curve and points shown in white. 82

4.18 Vector field design on a point cloud surface (left), with Dirichlet IBCs on
polyline curves and points shown in white. The resulting vector field is
visualized with flow lines on a triangulation of the point cloud (right). . . . 84

4.19 Maps from S1 to S2 with a texture for visualizing the mapping. Landmark
curves (Dirichlet IBCs) C1 and C2 are shown in white. (a) S1 with texture.
(b) S2 with texture from a noisy initial map. (c) S2 with a CPM harmonic
mapped texture without IBCs. (d) S2 with a harmonic mapped texture
using our CPM approach satisfying the IBCs. The surfaces are displayed as
point clouds. The cpS1 and cpS2 are computed from triangulations, while
cpC1 and cpC2 are computed from polylines. 86

4.20 Reaction-diffusion texture on a fish surface with zero Dirichlet IBCs around
the eye and on the tail. A two-sided zero Dirichlet-Neumann IBC is imposed
on the dorsal fin. The surface is coloured yellow for high concentrations of
reactant u and purple for low concentrations. The cpS are computed from
a triangulation, while the cpC are computed from polylines. 87

5.1 View-dependent diffusion curves with Projected walk-on-spheres. (PWoS).
Using our method, we solve the Laplace equation on a curved surface in
a view-dependent manner. The pointwise and discretization-free nature of
PWoS allows for the evaluation of the colours only at visible points where the
object colour is required by a shading algorithm with stochastic pixel-filtering. 91

xvi

5.2 A PWoS path for the Laplace equation on a grey 1D (curve) surface embed-
ded in 2D space, starting from x and terminating at the extended Dirichlet
boundary C. 96

5.3 Average number of steps required with different conservative local feature
size estimates. While any positive value smaller than 1 is valid for this setup,
using a local feature size estimate that is too small leads to excessively long
walks. 97

5.4 Effect of local feature size on convergence speed. The vertical axis of the
convergence plot represents the root mean squared error (RMSE), while the
horizontal axis shows the time in seconds. 98

5.5 Medial axis point clouds computed (blue) using Algorithm 3 on different
surface representations (green) and with different pruning methods. 101

5.6 Local feature size estimates for points on the Dzuik surface using the corre-
sponding medial axis point clouds computed in Figure 5.5. 103

5.7 Error convergence. The vertical axis of each error plot shows the root mean
squared error of the estimates at a few points on the surface in a logarithmic
scale, and the horizontal axis shows the number of samples NP in a loga-
rithmic scale. We show the result of the experiment (blue) and a line that
corresponds to the desired O(1/

√
NP) convergence rate (orange). 105

5.8 Error convergence. The vertical axis of each error plot shows the root mean
squared error of the estimates at a few points on the surface in a logarithmic
scale, and the horizontal axis shows the number of samples NP in a loga-
rithmic scale. We show the result of the experiment (blue) and a line that
corresponds to the desired O(1/

√
NP) convergence rate (orange). 106

5.9 Surface diffusion curves solved on various surface representations. The sur-
face on the left is represented as a combination of triangles, polylines, and
oriented points. The surface on the right is represented as a quadrilateral
mesh. 109

xvii

5.10 Geodesic distance computation with the heat method. For each of the two
scenes, we compare our algorithm on a polygonal mesh representation (left-
most) and oriented point cloud representation (middle-left) against a grid-
based CPM counterpart (middle-right) and the exact polyhedral distance
computed with geometry-central [154] (rightmost). For the sphere sur-
face (top), we compute the distance from the circle boundary curve in the
centre, and for the car surface (bottom), we compute the distance from the
surface boundary edges. Note that the rendering of the point clouds assigns
a UV coordinate per point, resulting in larger visual differences. 111

5.11 Using bounded sphere size. For the Poisson and screened-Poisson problems
(e), (g), and (h) in Figure 5.7, we compare the Default option of not con-
straining the sphere size (apart from the limit imposed by the local feature
size estimate) against specified limits on the maximum sphere size as indi-
cated in the legend. The vertical axis shows the root mean squared error,
and the horizontal axis shows the time in seconds. For (e), we had 1024
evaluation points, and for (g) and (h), we used 100 sample evaluation points. 113

6.1 Our algorithm to compute geodesic paths is applicable to any manifold rep-
resentation that supports closest point queries. The initial path (blue) is
iteratively shortened to a geodesic (red) using our heat-based method. Man-
ifold representation from left to right: exact closest point queries, mesh,
parameterization, level set. 115

6.2 One iteration of the Rapidly-exploring random trees. (RRT) algorithm
where xnew is connected to xnear in the tree T originally grown from the
start point p. The point xnew is generated by moving a distance δ from
xnear in the direction of xrand. 122

6.3 An initial path (blue) between the red points computed using RRT as dis-
cussed by Yuan et al. [193] (left) and our improved RRT implementation
(right). The full tree T computed by each algorithm is shown in black.
Note that Yuan et al. [193] projects the final blue path onto the surface
with cpS , but the final post-projection path is not shown here. 124

xviii

6.4 Histograms of path shortening timings when computing geodesics paths with
6 different meshes. Top row: All algorithms use the same initial path from
Dijkstra’s algorithm. Bottom row: The initial path is coarsened for our
method and the method of Yuan et al. [193]. Left column: Shortening
runtime normalized by the runtime of Dijkstra’s algorithm for path initial-
ization. Right column: Shortening runtimes normalized by the shortening
runtime of our method. 127

6.5 The runtime scaling of the three methods with respect to the number of
vertices in the path for the paths computed in Figure 6.4 (top row). 131

6.6 Runtime comparison of our method and the method of Sharp and Crane
[152] for the full pipeline to compute geodesics. 133

7.1 Results for three grid resolutions used to solve a diffusion curves problem
to colour the surface of a dragon. The resolution is illustrated by a small
block of grid cells (best viewed by zooming). The cpS are computed from a
triangulation, while the cpC are from polylines. 137

7.2 Left: When rΩ(S) < reach(S) is violated, neighbouring grid points (black
points) can be assigned data from their closest points (white) that are far
apart in terms of geodesic distance. Right: Two segments (green) of the
rays starting from xi that intersect S (blue) orthogonally. The points of
intersection pi,1 and pi,2 lie at the intersection of the green and blue curves. 139

xix

List of Tables

3.1 Ratios of computation time Tspdup and memory usage Mred for Eigen’s
SparseLU and Biconjugate gradient stabilized method. (BiCGSTAB) as
well as PARDISO as compared to our tailored BiCGSTAB solver, for the
experiments of Figure 3.2. 28

3.2 Attribute comparison when solving (3.18) on the hyperbolic spiral with uni-
form computational tubes versus adaptive. Timings are average values over
20 trials. The error is computed at 5000 equally spaced points in θ parameter. 36

3.3 Attribute comparison when solving (3.21) on the spiral sheet with uniform
computational tubes versus adaptive. The error is computed at 40,000
equally spaced points in θ and z parameters. 42

3.4 Attribute comparison when solving the screened-Poisson equation on the
doughnut with uniform computational tubes versus adaptive. The error is
computed at the 983,040 vertices of the mesh. 45

6.1 Iterations and errors for RRT path initialization on the unit sphere. 125

6.2 Path differences between the three methods for all paths computed in Fig-
ure 6.4. 129

6.3 Path error for all the geodesic paths computed for Figure 6.6. 132

xx

List of Abbreviations

BC Boundary condition. v, xiii, xiv, 9, 26, 27, 29, 30, 34, 36, 38, 42, 47, 49–55, 57–60,
62, 63, 71, 75, 76, 80, 88, 118, 135, 138–140

BFS Breadth first search. 23, 24, 45

BiCGSTAB Biconjugate gradient stabilized method. xx, 6, 17, 25–28, 34, 38, 45, 76

CNC Computer numerical control. 114

CP Closest point. xiii, 10–19, 21, 25, 29–32, 43, 50–53, 57, 58, 61, 69, 76, 80, 92–94, 96,
102, 112, 114, 118, 138, 139

CPM Closest point method. v, x–xiii, xv, xvi, xviii, 5–14, 17, 18, 20, 21, 23, 25, 28–32,
34–36, 38, 43, 45, 46, 48–52, 55, 56, 62–78, 80, 81, 83, 85–88, 92, 93, 97, 102, 108,
110, 111, 116–118, 128, 135, 136, 138–140, 142

CPU Central processing unit. 23, 126

DOF Degrees of freedom. x, xiv, 17, 21, 24, 28, 31, 34–36, 38, 42, 45–49, 52–55, 57–60,
62, 69, 75, 76, 88, 135, 138, 139

FD Finite difference. xiii, 18, 20, 21, 24, 32, 50–53, 55–58, 60, 61

FEM Finite element method. 17, 138

GPU Graphics processing unit. 9, 23, 45, 126

IBC Interior boundary condition. v, xi, xiv–xvi, 6, 27, 28, 47–49, 52, 53, 55–60, 62–69,
71–76, 79, 80, 82–88, 138–140

xxi

LBFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. 125, 163

LiDAR Light detection and ranging. 1

PDE Partial differential equation. v, xi, xii, 3–5, 8, 9, 11–19, 21, 23, 25, 28, 29, 31, 32,
47–49, 53, 57–59, 64, 69, 72, 75, 76, 83, 85, 87–90, 92–94, 96, 110, 112, 117, 135, 136,
138–140, 142

PWoS Projected walk-on-spheres. xvi, xvii, 89–91, 93, 96, 97, 102, 108–110

RRT Rapidly-exploring random trees. xviii, xx, 120–122, 124, 125, 130, 132, 134

SAT Scale axis transform. 100–103

SDF Signed distance fields. 140, 141

SNS Spherical neural surfaces. 140, 141

SOTA State-of-the-art. 116, 132, 134

WENO Weighted essentially non-oscillatory. 139

WoS Walk-on-spheres. 89, 90, 92–94, 96, 97, 112

xxii

List of Symbols

C Subset of S where interior boundary condition is enforced. x, xiv–xvii, xix, xxiii, xxiv,
47–49, 52–69, 71–76, 78–80, 83, 85–88, 93–97, 102, 104, 110, 137, 140

∆t Time-step size. 25, 63, 76, 80, 85, 87, 118–120

∆S Laplace-Beltrami operator. 12, 13, 15, 18, 19, 25, 33, 35, 38, 43, 63, 64, 71, 75, 79, 87,
92, 108

∆ Cartesian Laplacian operator. 13–16, 18, 90, 92–94, 117, 118

S⊥ Manifold orthogonal to S along ∂S or C (defined in (4.2)). x, xiv, 48–50, 52–61, 76

S Manifold. xiii–xvi, xviii, xix, xxiii–xxv, 4, 6, 7, 10–25, 28–36, 38, 42–67, 69, 71–76,
78–80, 83, 85–88, 92–100, 102, 104, 107, 108, 110, 114, 116–126, 128, 130, 135–139,
142, 163, 164

bC Unit binormal vector along C. 63, 64, 71, 79

Ω(C) Interior boundary subset of Ω(S). xiv, xxiii, 52–62, 66, 69

Ω(∂C) Boundary subset of interior boundary subset Ω(C). 59

Ω(∂S) Exterior boundary subset of Ω(S). xiv, 29, 42, 49–53, 55, 59

rΩ(S) Computational tube radius of Ω defined in (3.4). xix, 20–24, 35, 36, 38, 49, 53, 60,
69, 73, 76, 136, 138, 139

Ω(S) Computation tube of S defined in (2.1). xiii, xiv, xix, xxiii, 14, 17–24, 31–36, 38,
43–46, 48–51, 53–55, 57–62, 66, 69, 73, 76, 85, 118, 120, 121, 135, 136, 138, 139

n∂S Unit conormal vector along ∂S. 50, 63

xxiii

cp Closest point of the point “reflected” through ∂S defined in (4.3). This notation is also
used for the closest point of the point reflected through C defined in (4.11). 50, 51,
58

cpS−C Difference between closest points to S and C, i.e., cpS − cpC. 55–61

E Closest point extension operator. 13–16, 18, 30, 31, 92, 93

cpS Closest point function or query for S. xiii–xvi, xviii, xix, xxiv, 10–14, 16–21, 23, 24,
29–32, 43, 49–53, 55–61, 65–67, 72–74, 76, 80, 85–88, 92–97, 99, 104, 117–125, 130,
136–138, 142, 163, 164

dim(S) Dimension of manifold S. 10, 17, 21–23, 73, 94, 97, 104, 135

d Dimension of embedding space surrounding S. xxv, 10, 17–23, 62, 90, 92, 97, 135

∇S · Manifold intrinsic divergence operator. 11, 12, 75

∇ · Cartesian divergence operator. 11, 12

q Number of grid points from the centre of hyper-cross FD stencil. 20, 21, 31, 34, 136

∇S Manifold intrinsic gradient operator. 11, 12, 50, 63, 64, 71, 75, 79, 87, 114

∇ Cartesian gradient operator. 11, 12

p Degree of polynomial interpolant. 18, 20, 21, 31, 34, 61, 69, 71, 136

Ii Indices of grid points in interpolation stencil of cpS(xi). 18, 20, 21, 51, 53, 57, 58

LFS(y) Local feature size at y ∈ S. 10, 35, 36, 42, 92, 93, 138

med(S) Medial axis of S. xxiv, 10, 11, 92, 96, 138

nS Unit manifold normal vector. 49, 50, 60, 61, 63, 80

∂S Exterior boundary of manifold §. xiii, xiv, xxiii, 6, 29–32, 42, 46, 47, 49–53, 55, 59,
63, 73, 75, 88, 117

reach(S) Reach of S, i.e., the minimum distance from S to med(S). xix, 10, 35, 36, 38,
136, 138, 139

uS Scalar manifold intrinsic function. xiii, 11–13, 15, 18, 19, 25, 30, 31, 33, 35, 38, 42, 43,
50, 51, 53, 58, 62, 92, 93, 107, 108

xxiv

u Scalar function in the embedding space Rd. xiii, 11–16, 18, 19, 43, 44, 51, 58, 90, 92–96,
110, 116

rN (S) Tube radius of N (S). 10, 22, 29, 92, 121, 123, 136

N (S) Tubular neighbourhood of S. xiii, xv, xxv, 10–17, 21, 22, 29–31, 49, 52, 53, 55–57,
92–94, 97, 121–123, 136

x Point in the embedding space Rd. xiii–xv, xviii, xix, xxiv, 10–12, 14–21, 23, 24, 29–32,
42, 43, 49–53, 55–62, 64, 73, 78, 80, 85, 92, 99, 108, 116–118, 121–123, 136, 138, 139,
142, 163, 164

y Point on the manifold S. xxiv, 10, 11, 13, 16, 19, 24, 31, 32, 49, 50, 55, 57–59, 83, 121,
164

xxv

Chapter 1

Introduction

1.1 Motivation

In the field of geometry processing, the lifecycle of discrete objects (a.k.a. digital objects)
starts with their creation, then they are analysed and/or manipulated in various ways, and
finally ingested by us through visualization and/or input into downstream applications.

Discrete objects with astonishing realism have been created in numerous ways. Data
from real-world objects can be captured using scanning equipment such as LiDAR sensors,
which are common in self-driving cars for mapping their environment [195]. Real-world
objects can also be captured using images from multiple views to bring them into virtual
worlds (such as video games, movies, and the metaverse) with just a smartphone cam-
era [73]. Discrete objects can be created manually by researchers, engineers, and artists.
Manual creation can be tedious and time-consuming; however, many software programs
have been developed to aid with this endeavour (e.g., AutoCAD [9], nTop [121], Hou-
dini [161], Blender [48], Maya [10]). With recent developments in generative AI, many
objects can be created from just text descriptions [133].

With the vast number of ways in which a discrete object can be created comes a vast
number of different discrete representations. See Figure 1.1 for some example discrete rep-
resentations. A commonly used representation is a mesh, which stores a list of vertices and
a list of faces formed by connecting those vertices. Point clouds are obtained from LiDAR
scanners and stored using the coordinate values of each point in the cloud. Objects can
also be represented in functional form, e.g., parameterizations and level sets. Neural rep-
resentations of objects are becoming increasingly common, such as neural signed distance
fields [168] and neural radiance fields [101].

1

(u, v)

Figure 1.1: Discrete object representations that support closest point queries (bottom
right) include parametrizations (top left), meshes (top middle), point clouds (top right),
and level sets (bottom left).

2

The next step in the discrete object’s lifecycle is for it to be analysed and/or manip-
ulated by algorithms that researchers and engineers create. An unfortunate consequence
of having many representations is that hours, days, weeks, or even months of research and
development time are spent on algorithms that accomplish the same task, but for differ-
ent discrete representations. For example, the method for computing geodesic distance
by Crane et al. [33] was initially demonstrated on meshes and point clouds, but has since
been implemented for subdivision surfaces, spline surfaces, and voxel surfaces [30]. The
research and development time can be orders of magnitude larger than the runtime of an
algorithm (usually on the order of milliseconds to days). Therefore, the existence of many
representations causes wasted research and development time that could be spent more
efficiently accomplishing other important tasks/applications.

Applications of geometry processing include computing properties of the shape, such as
normals, Gaussian and mean curvatures, and geodesic distance and paths [34]. Other appli-
cations analyse geometry through operators such as the Laplace-Beltrami and biharmonic
operators and their eigen-decompositions [5, 137]. Another common task in geometry pro-
cessing is reconstructing the discrete object itself from data captured of an object in the
real-world [148].

There are also segmentation tasks similar to image segmentation. For example, seg-
menting the inside and outside of a surface [13], cutting the surface into smaller pieces [151],
or segmenting data on surfaces [172]. Surface mappings such as conformal [29], har-
monic [72], and others are useful for understanding differences, to transfer data, or interpo-
late between the two shapes. Other applications include surface smoothing, deformation of
shapes for character skinning, parameterizing surfaces for texture mapping, and remeshing.

The above geometry processing applications are implemented in libraries such as li-
bigl [62], Geometry Central [154], and CGAL [170]. Most work in geometry processing has
been done with a mesh representation of an object. The website for libigl states “Most are
tailored to operate on a generic triangle mesh...” and the Geometry Central website states
“...with a particular focus on meshes.”

However, constructing clean meshes is a difficult problem and most meshes constructed
“in the wild” consist of problematic elements (e.g., skinny triangles, self-intersections, and
spurious holes) for downstream algorithms. It is possible to improve robustness using
intrinsic Delaunay triangulations [156]. However, meshes usually only consist of planar el-
ements, which restricts the order of accuracy. Higher-order patches are possible, e.g., [116],
but complicate algorithms.

We focus on geometry processing algorithms that use manifold partial differential equa-
tions, which are partial differential equations (PDEs) whose solutions are restricted to lie

3

on a manifold S. In geometry processing, the numerical solution to a manifold PDE is
typically sought by approximating the manifold as a mesh and discretizing the PDE using
finite element or discrete exterior calculus techniques. However, one must perform mesh
generation if the input manifold is not given as a mesh. The mesh quality also strongly
influences the resulting solution and therefore remeshing is required if the input mesh is of
low quality or inappropriate resolution. Both mesh generation and remeshing are nontriv-
ial tasks. Furthermore, depending on the chosen numerical method, the discretization of a
particular manifold PDE can differ significantly from the corresponding discretized PDE
on Cartesian domains; further analysis can be needed to derive an appropriate convergent
scheme for the manifold case.

1.2 Approach

A single discrete representation would be ideal to allow for research and development on
one unified framework that handles any object and any application. We could then finally
create, analyse/manipulate, and ingest discrete objects without wasted effort. In this
thesis, we begin to develop this unified framework using the closest point representation
for specific applications/algorithms from geometry processing. Even though our emphasis
is on geometry processing, our work extends to other areas of computer graphics and even
other fields since manifold PDEs also arise naturally in applied mathematics, mathematical
physics, image processing, computer vision, and fluid dynamics.

A closest point representation stores the closest point on the object (in Euclidean dis-
tance) of a query point in the space surrounding the object. Closest points benefit from
their ability to represent very general objects. Both manifolds (spaces that resemble Eu-
clidean space locally at every point) and nonmanifold objects can be represented using
closest points. Input objects can be open or closed, orientable or not, and of any codimen-
sion or even mixed codimension. The complete list of the types of objects a closest point
representation can handle is an open question. Therefore, even though the most common
objects in geometry processing are surfaces (2D manifolds), much of the work in this the-
sis is applicable to more than just surfaces. Our work primarily uses 1D curves and 2D
surfaces embedded in R2 and R3 that are manifold, but some examples use nonmanifold
objects.

A closest point representation also has a powerful property that makes it versatile
for applications: It is simultaneously an implicit and an explicit representation. To our
knowledge, no other single representation possesses this property. Implicit and explicit

4

representations have their own benefits and limitations for different applications. For ex-
ample, the (implicit) level set method for surface evolution [123] automatically handles
topology changes; it does not require the complexities of manually altering the explicit
representation for topology changes (see, e.g., [35]). Heiss-Synak et al. [55] recently intro-
duced a method for surface tracking that combines a local implicit surface with an explicit
mesh to avoid handling all possible types of mesh intersections while better preserving
surface detail. Furthermore, Poursaeed et al. [134] developed a neural representation that
simultaneously outputs an implicit and explicit surface representation. Their combined
neural representation provided more accurate implicit occupancy functions and smoother
explicit surfaces with more accurate normals.

Closest point queries are available for many common discrete manifold representations,
as highlighted by Sawhney and Crane [140]. Therefore, our algorithms can be applied to
meshes, level sets, point clouds, parametric manifolds, constructive solid geometry, neural
implicit surfaces, and many more. Such generality is appealing given the increasing demand
for algorithms that can ingest general “in-the-wild” and high-order geometries [60, 13, 140,
93].

Another benefit of the closest point representation is that manifold PDEs can be solved
using the closest point method (CPM) [138]. CPM is an embedding technique that solves
the manifold problem by embedding it into a surrounding Cartesian space. Other em-
bedding methods exist, but CPM is an especially attractive instance of this strategy, as
it offers a remarkable combination of simplicity, accuracy, robustness, and generality. Its
simplicity, accuracy, and robustness come from its ability to leverage standard Cartesian
numerical methods in the embedding space to solve the desired manifold problem, given
only closest point queries to the manifold (i.e., through the closest point representation
introduced above). Its generality lies in its support for diverse manifold characteristics,
manifold representations, and manifold PDEs.

Moreover, the embedding PDE solved on the Cartesian domain is often simply the Carte-
sian analogue of the desired manifold PDE. Thus, CPM has been applied to the heat equa-
tion, Poisson and screened-Poisson equations, Laplace-Beltrami eigenproblem, biharmonic
equation, advection-diffusion and reaction-diffusion equations, Hamilton-Jacobi equation,
Navier-Stokes equation, Cahn-Hilliard equation, computation of (p-)harmonic maps, and
more.

Yet, despite the desirable properties of the closest point representation and CPM, com-
puter graphics researchers have only used them infrequently, and almost exclusively for
fluid animation [57, 7, 6, 68, 108]. However, some prior work has focused on problems of
relevance to geometry processing, but appears in the applied mathematics literature. For

5

example, Macdonald et al. [89] computed eigenvalues and eigenfunctions of the Laplace-
Beltrami operator via CPM. The resulting eigenvalues of surfaces were used by Arteaga and
Ruuth [5] to compute the ‘Shape-DNA’ [137] for clustering similar surfaces into groups.
Segmentation of data on surfaces was demonstrated by Tian et al. [172] who adapted
the Chan-Vese algorithm common in image processing. Different approaches to compute
normals and curvatures were discussed in the original CPM paper [138, Appendix A].

1.3 Contributions

In the present work, we demonstrate CPM’s wider potential value for geometry processing
by extending CPM to handle several applications: diffusion curves, geodesic distance and
paths, vector field design, and reaction-diffusion textures. However, crucial limitations of
the existing CPM stand in the way of this objective.

To scale up to manifolds with finer details that are common in geometry processing,
we develop a tailored numerical framework and solver discussed in Chapter 3. The com-
putational domain for CPM is only required near the manifold S, so we use a sparse grid
structure to improve memory and runtime efficiency. We also develop a custom precon-
ditioned BiCGSTAB solver to improve runtime when solving the linear system that also
better utilizes memory. The combination of the sparse grid structure near S and the cus-
tom solver allows us to efficiently scale to tens of millions of degrees of freedom. We also
develop an approach to support spatial adaptivity of the computational domain to reduce
the number of degrees of freedom in regions where they are unnecessary.

CPM previously supported standard boundary conditions on the geometric (exterior)
boundary of an open manifold, ∂S, but it did not yet support accurate interior boundary
conditions (IBCs), i.e., boundary conditions at manifold points or curves away from ∂S.
CPM’s use of the embedding space makes enforcing IBCs nontrivial, but they are vital for
some of the geometry processing applications above. For example, the curves in diffusion
curves or the source points for geodesic distance computation generally lie on the interior
of S. Therefore, in Chapter 4, we propose a novel mechanism that enables accurate IBC
enforcement for CPM in R2 and R3, while retaining its simplicity, accuracy, robustness,
and generality.

With these improvements to CPM we are able to effectively handle the applications
above. All applications benefit from the scalable implementation discussed in Chapter 3.
Examples for diffusion curves, geodesic distance, vector field design, reaction-diffusion
textures, and harmonic maps with feature curves and points are shown in Chapter 4 since
they require IBCs.

6

Although it is most common for CPM to use standard numerical methods on a Cartesian
grid in the embedding space surrounding S, as in Chapters 3 and 4, we further explore two
extensions of CPM that do not. Chapter 5 explores a discretization-free implementation of
CPM using a Monte Carlo technique, while Chapter 6 introduces an algorithm for geodesic
paths. We conclude with an in-depth discussion of future directions for CPM research in
Chapter 7 but start with a review of the grid-based CPM in Chapter 2.

In summary, the key contributions of our work are to:

• employ a sparse grid structure and develop a custom solver for runtime and memory
efficiency, which enables scaling to tens of millions of degrees of freedom;

• provide a spatial adaptivity framework for the grid-based CPM;

• introduce a framework for interior boundary conditions for the grid-based CPM with
up to second-order accuracy;

• provide a discretization-free implementation of CPM by hybridizing it with the walk-
on-spheres Monte Carlo method;

• introduce a novel approach to compute geodesic paths using harmonic maps;

• demonstrate the effectiveness of our work for several geometry processing tasks; and

• provide insights into promising future directions for CPM research.

7

Chapter 2

Closest Point Method Review

CPM was introduced by Ruuth and Merriman [138], who applied it to diffusion, advec-
tion, advection-diffusion, mean curvature flow of curves on surfaces, and reaction-diffusion.
They drew inspiration from earlier embedding methods based on level sets [18, 53], while
eliminating the restriction to closed manifolds, supporting more general PDEs, and allow-
ing for narrow-banding without loss of convergence order. This chapter provides a review
of the basics of CPM and the variants that exist. We briefly review the literature on CPM
and related methods first, but delay the review of related work specific to our contribu-
tions to the chapters that follow. Note that abbreviations and most mathematical symbols
throughout the thesis have hyperlinks to a glossary to assist the reader.

CPM has been shown to be effective for a wide range of PDEs in addition to those
used by Ruuth and Merriman [138]. These include the screened-Poisson (a.k.a. positive-
Helmholtz) equation [24, 98], Hamilton-Jacobi equations/level-set equations [87], bihar-
monic equations [88], Cahn-Hilliard equation [150, 49], Navier-Stokes equation [7, 191],
construction of (p-)harmonic maps [72], and more. Although originally designed for mani-
fold PDEs, CPM can also be applied to volumetric (codimension-0) problems and surface-
to-bulk coupling scenarios [90]. Related closest point mapping approaches have also been
used to handle integral equations [76, 75, 23, 26].

CPM has mostly been used on static manifolds with a uniform grid in the embedding
space as the computational domain. However, Petras and Ruuth [127] combined CPM
with a grid-based particle method to solve PDEs on moving surfaces. A mesh-free CPM
approach was investigated in [132, 25, 128, 129, 130] using radial-basis functions. In Chap-
ter 5, we introduce a method that is completely discretization-free, but much of the work
in this thesis involves the grid-based CPM.

8

The CutFEM family of methods [20] represents another embedding approach. They use
finite elements (rather than finite differences) on a non-conforming simplicial embedding
mesh. They have been used to solve various manifold PDEs (e.g., Laplace-Beltrami [21],
convection [22]). However, cutting the mesh can result in small intersections with the man-
ifold and lead to poorly conditioned matrices or even unstable discretizations [20]. Penalty
terms are added to alleviate these issues; however, they must be carefully constructed for
each type of PDE.

CPM in Computer Graphics

In the computer graphics community, perhaps the most closely related work is the embed-
ding method of Chuang et al. [28]. They solve Poisson problems using the finite element
method on a 3D grid surrounding a mesh with B-spline basis functions that are subse-
quently restricted to the object’s surface. They demonstrated geometry processing appli-
cations such as texture back-projection and curvature estimation. They also showed that
the observed eigenspectra are much less dependent on the surface triangulation than with
standard mesh-based methods. While their approach has some conceptual connections
to CPM, it does not possess the same degree of simplicity or generality as CPM (e.g., it
only applies to mesh representations). The thesis by Chuang [27] further demonstrates an
extension of this approach to use locally nonmanifold grids to address narrow bottlenecks,
where two pieces of a surface are close in Euclidean distance but far apart in geodesic
distance. Our spatial adaptivity framework in Section 3.4 helps address the bottleneck
issue without the use of nonmanifold grids. Chapter 4 does introduce a nonmanifold grid
structure but with the distinct aim of handling interior BCs.

CPM itself has been applied in computer graphics, primarily for fluid animation. Hong
et al. [57] used a modified CPM to evolve and control the motion of flame fronts restricted
to surfaces. The work of Kim et al. [68] increased the apparent spatial resolution of an
existing volumetric liquid simulation by solving a wave simulation on the liquid surface.
The surface wave equation and Navier-Stokes equations were solved by Auer et al. [7] with
a real-time implementation on the GPU. Auer and Westermann [6] subsequently extended
this work to support deforming surfaces given by a sequence of time-varying triangle meshes
(predating the moving surface work of Petras and Ruuth [127] in computational physics).
Morgenroth et al. [108] employed CPM for one-way coupling between a volumetric fluid
simulation and a surface fluid simulation for applications such as oil films spreading on
liquid surfaces.

The use of closest points in a grid surrounding a surface has also been used for visualiza-
tion purposes in computer graphics. Auer and Westermann [8] create triangulations with

9

a subset of the closest points as vertices. Demir and Westermann [39] visualize the surface
directly via ray-casting instead. Kim and Hansen [67] visualize flow fields on surfaces,
while Demir et al. [40] visualize the central tendency of a group of surfaces.

2.1 CPM Basics

Consider a manifold S embedded in Rd, where d ≥ dim(S). The closest point method
uses a closest point (CP) representation of S, which is a mapping from points x ∈ Rd to
points cpS(x) ∈ S. The point cpS(x) is defined as the closest point on S to x in Euclidean
distance, i.e.,

cpS(x) = argmin
y∈S

∥x− y∥,

where ∥ · ∥ denotes the 2-norm throughout. A CP representation can be viewed as pro-
viding both implicit and explicit representations. The mapping cpS : Rd → S represents
S implicitly: a traditional scalar (though unsigned) implicit manifold can be recovered as
the zero-isocontour of the distance function ∥x− cpS(x)∥. A vector-valued implicit repre-
sentation of S is also available since x = cpS(x) for x ∈ S. Meanwhile, the closest points
themselves give an explicit representation of S, albeit without connectivity (i.e., a point
cloud).

CPM embeds the manifold problem into the space surrounding S. Consider a tubular
neighbourhood (see Figure 2.1 left) defined as

N (S) =
{
x ∈ Rd

∣∣∣ ∥x− cpS(x)∥ ≤ rN (S)

}
, (2.1)

where rN (S) is called the tube radius. For general S, the closest point cpS(x) is rarely
unique for all x ∈ Rd. However, for smooth and compact manifolds, cpS(x) is unique for
x in a tubular neighbourhood N (S) with a sufficiently small tube radius rN (S) [96].

Uniqueness of cpS is equivalent to requiring N (S)∩med(S) = ∅, since by definition the
medial axis of S, denoted med(S), is the subset of Rd that has at least two closest points on
S. The reach(S) is the minimum Euclidean distance from S to med(S). Thus, for a tube
with constant radius, the tube radius must satisfy rN (S) < reach(S) to ensure uniqueness
of cpS . Hence, N (S) depends on the geometry of S since reach(S) depends on curvatures
and bottlenecks (thin regions where the Euclidean distance is small between geodesically
distant parts of S) of S (see [1, Section 3]). If rN (S) is allowed to vary for y ∈ S, then the
tube radius must instead satisfy rN (S)(y) < LFS(y), where LFS is the local feature size.

10

N (S)

uS
uS(cpS)

Figure 2.1: Left: A tube N (S) (grey) around a 1D curve S (coloured) embedded in R2.
Right: A visualization of u ∈ N (S) resulting from the CP extension of uS ∈ S.

The local feature size is defined as the minimum Euclidean distance from y to the medial
axis med(S) [4].

To solve manifold PDEs with CPM an embedding PDE is constructed on N (S), whose
solution agrees with the solution of the manifold PDE at points y ∈ S. Let uS(y), for
y ∈ S, and u(x), for x ∈ N (S), denote the functions defined on the manifold S and the
neighbourhood N (S), respectively.

CPM relies on two principles to construct an embedding PDE. The manifold gradi-
ent ∇S and manifold divergence (∇S ·) operators are replaced by the standard Cartesian
gradient ∇ and divergence (∇ ·) operators via the following principles [138]:

Principle 1 Let v be any function on N (S) that is constant along normal directions of S.
Then, on S, manifold gradients are equivalent to standard gradients, ∇Sv = ∇v.

Principle 2 Let v be any vector field on N (S) that is tangent to S and tangent to all
manifolds displaced by a fixed distance from S (i.e., level sets of the distance function of
S). Then, on S, ∇S ·v = ∇ ·v.

For Principle 1, the only changes in v are in the tangential direction of S since the function
v on N (S) is constant in the normal direction. Hence, Cartesian gradients on N (S) are

11

equivalent to manifold gradients for points on the manifold. Similarly for Principle 2, if a
vector field is constrained to the tangent space of S (or the tangent spaces of the level sets
of the distance function to S) it can only spread out (or compress) within that tangent
space.

Extensions of manifold functions into N (S) such that the function is constant in the
normal direction of S can be accomplished efficiently using the closest point extension.
The CP extension is just the composition of the manifold function with the closest point
function. That is, uS(cpS(x)) is the CP extension of uS at the point x ∈ N (S) (see
Figure 2.1 right).

Higher order derivatives can be handled by combining Principles 1 and 2. To illustrate
this idea, consider the Laplace-Beltrami operator ∆SuS = ∇S · (∇SuS). If uS is a function
defined on S, then uS(cpS) is constant along normal directions of S and therefore ∇SuS =
∇uS(cpS) on S, by Principle 1. Principle 2 implies that ∇S · (∇SuS) = ∇ · (∇uS(cpS)) on
S, since ∇uS(cpS) is always tangent to the level sets of the distance function of S. In this
fashion, an embedding PDE is obtained that involves standard Cartesian derivatives and
a closest point function. Some example embedding PDEs are given in Section 2.2. See the
work of März and Macdonald [96] for a more thorough theoretical study of the foundations
of CPM.

The solution to the embedding PDE is then solved using a chosen numerical method.
The majority of this thesis uses a uniform Cartesian grid discretization of N (S), as dis-
cussed in Chapter 3 (before Section 3.4). Finite-difference methods are then used to ap-
proximate differential operators and barycentric-Lagrange interpolation is used for the CP
extension on the uniform grid. Chapter 5 introduces a discretization-free numerical method
for CPM using a Monte Carlo approach instead.

2.2 Variants of the Closest Point Method

In this section, we summarize different variants of CPM for solving manifold PDEs. The
foundational work of Ruuth and Merriman [138] introduced CPM with time-dependent
problems and explicit time-stepping (Section 2.2.1). The following two variants (Sections
2.2.2 and 2.2.3) are required to address issues that arise due to implicit time-stepping
and stationary problems. The fourth and final variant (Section 2.2.4) guarantees that the
solution u ∈ N (S) is constant in the normal direction of S.

We use the first three variants in Chapters 3 and 4 depending on whether stationary or
time-dependent problems are being solved and if explicit or implicit time-stepping is used.

12

Chapter 5 uses the third variant to explain the theory of our method. Chapter 6 does not
use any variant of CPM; it is based on CPM work of King and Ruuth [72] that simplifies
to a PDE on a 1D line for geodesic paths, so standard finite-differences in 1D can be used.
The fourth variant is included here for completeness.

Section 2.2.2 discusses how the numerical stability issue from implicit time-stepping is
addressed by Macdonald and Ruuth [88]. Macdonald, Brandman, and Ruuth [89] were the
first to handle a stationary problem, specifically computing the eigenvalues and eigenvectors
of the Laplace-Beltrami operator. Section 2.2.3 summarizes how stationary problems using
the Ruuth and Merriman [138] approach are not well-posed and how this is addressed by
Macdonald, Brandman, and Ruuth [89]. Interestingly, the method of Macdonald, Brand-
man, and Ruuth [89] is a generalization of the method used to improve the numerical
stability by Macdonald and Ruuth [88]. Finally, Section 2.2.4 discusses an approach to
guarantee that the solution is constant in the normal direction of the manifold. Chen and
Macdonald [24] introduced this approach for stationary problems and von Glehn et al.
[177] did the same for time-dependent problems.

2.2.1 Ruuth and Merriman [138] Approach

The original CPM was developed for time-dependent problems using explicit time-stepping.
First, the initial manifold data uS

0 is extended onto N (S) using the CP extension. The CP
extension operator, denoted E, extends manifold functions onto N (S) to be constant in
the normal direction of S and is defined as EuS(y) = uS(cpS(y)). For functions u ∈ N (S)
the extension E acts on the restriction of u to the manifold, i.e., Eu = E(u|S).

We will illustrate this variant of CPM with the heat equation

∂uS
∂t

= ∆SuS . (2.2)

The Laplace-Beltrami operator ∆S in (2.2) is equivalent to the following:

∆SuS(y) = ∆[EuS](y), y ∈ S, (2.3)

where ∆ is the Laplace operator on N (S). The notation ∆[EuS](y) means that we first
compute EuS , then apply the Laplacian ∆ and finally evaluate at y. The embedding PDE
to be solved becomes

∂u

∂t
= ∆[Eu] on N (S). (2.4)

The following two steps are alternated:

13

• Evolution. The embedding PDE is solved on N (S) for one time-step with an explicit
time-stepping method (or one stage of a Runge-Kutta method is performed).

• CP extension. The solution on S is re-extended onto N (S) by replacing u with Eu.

2.2.2 Macdonald and Ruuth [88] Approach

The naive approach for implicit time-stepping would be to apply an implicit method
to (2.4). However, this can result in a numerically unstable method when discretized.
Consider a uniform grid Ω(S) with spacing h discretizing N (S) (see Chapter 3 for details).
The naive approach is unstable when the time-step is O(h) because some of the eigenvalues

of M̃ = LE are in the right half of the real-complex plane (see [88, Figure 2.2]), where L
is a finite-difference approximation of ∆ and E is a Lagrange interpolation approximation
of E on Ω(S).

Macdonald and Ruuth [88] realized that the CP extension was redundant for diagonal
terms in L since u(x) = u(cpS(x)). With the aim of improving stability, they removed

redundant CP extension operations to increase diagonal dominance. Specifically, M̃ was
replaced by M = LE− 2d

h2
(I− E). An implicit time-stepping method is then applied to

∂u

∂t
= Mu on Ω(S). (2.5)

They applied their approach to problems to confirm that it was stable in practice for any
time-step size.

2.2.3 Macdonald, Brandman, and Ruuth [89] Approach

The work of Macdonald, Brandman, and Ruuth [89] studied eigenproblems with CPM. The
null-eigenspace of the embedding PDE is infinite-dimensional (see [89, Problem 2]) if the ap-
proach of Ruuth and Merriman [138] is used (i.e., replacing the Laplace-Beltrami operator
with (2.3)), making the problem ill-posed. Therefore, a penalty method (penalizing solu-
tions far from constant normal extensions) was introduced to restrict the null-eigenspace
and provide a one-to-one correspondence between the manifold PDE eigenproblem and the
embedding PDE eigenproblem. Specifically, ∆[Eu](x) was replaced by

∆γu(x) = ∆[Eu](x)− γ
(
u(x)− [Eu](x)

)
. (2.6)

14

The scalar γ = 2d
ϵ2

is taken in [89] which allows large changes in the normal direction to be
penalized since ∆γu will be large if |u− Eu| is not O(ϵ2).

This idea can be extended to other manifold PDEs to avoid ill-posedness of problems.
Consider the Poisson equation

∆SuS = fS . (2.7)

To define the embedding PDE on N (S), we also extend fS as f(x) = [EfS](x). The
equation ∆[EuS](x) = f(x), for x ∈ N (S), is ill-posed because f is constant in the normal
direction of S but ∆[EuS] is not guaranteed to be. Therefore, the embedding PDE for (2.7)
becomes

∆[EuS](x) = f(x) + g(x), x ∈ N (S), (2.8)

where g(x) is a function that compensates for ∆[EuS] not being constant in the normal
direction of S. The function g(x) is nonzero for x ∈ N (S) \ S and g|S = 0 to ensure (2.8)
is consistent with the manifold PDE (2.7) on S. Any function g with these conditions has
the form g(x) = γ(v(x)− Ev(x)), where γ ∈ R and γ ̸= 0.

The Macdonald-Brandman-Ruuth approach (see [24, Section 2.3]) takes v|S = uS to
allow (2.8) to be written as an equation in one unknown, v(x), since EuS = Ev (but
importantly v ̸= Ev except on S). Overall, the embedding PDE becomes

∆[Ev](x)− γ
(
v(x)− [Ev](x)

)
= f(x), x ∈ N (S). (2.9)

2.2.4 Guaranteeing Solutions Constant in the Normal Direction

The Macdonald and Ruuth [88] and Macdonald, Brandman, and Ruuth [89] (Sections 2.2.2
and 2.2.3) approaches do not produce solutions on N (S) that are constant in the normal
direction of S. For example, rearranging (2.9) for the solution v(x) we have

v(x) =
1

γ

(
∆[Ev](x) + γ[Ev](x) + f(x)

)
, x ∈ N (S). (2.10)

Since ∆[Ev](x) is not constant in the normal direction of S, the solution v(x) is not (even
though [Ev](x) and f(x) are). The Ruuth and Merriman [138] approach does result in
a solution that is constant in the normal direction since a CP extension is applied in the
final step. However, a CP extension can always be applied as a final step in any variant to
obtain a solution constant in the normal direction on N (S).

Chen and Macdonald [24] introduce an alternative approach that directly enforces the
constraint u(x) = [Eu](x), for x ∈ N (S). Ultimately, they just need to swap the order of

15

the Laplacian and CP extension operators, i.e., they use E[∆v] instead of ∆[Ev], which is
justified by the following. The constraint u(x) = [Eu](x) being imposed means that ∆u
can replace the Laplace-Beltrami operator on S in the manifold PDE (2.7), thus

∆u(y) = f(y), y ∈ S. (2.11)

The point cpS(x) ∈ S so we can replace y with cpS(x) to obtain the embedding PDE on
N (S) as

[∆u](cpS(x)) = f(cpS(x)), x ∈ N (S),

or equivalently using our CP extension operator notation

E[∆u] = f, x ∈ N (S), (2.12)

where Ef = f due to the idempotence of the CP extension.

The full problem then becomes

E[∆u] = f,

subject to u = Eu, x ∈ N (S).
(2.13)

Combining the two equations results in a single embedding PDE

E[∆u]− γ
(
u− Eu

)
= f, x ∈ N (S). (2.14)

The benefit of this approach is not obvious in the continuous setting since one can easily
perform a final CP extension to obtain a solution that is constant in the normal direction of
S instead of requiring this a priori. However, Chen and Macdonald [24] note that different
interpolants can be used for the CP extension E of the E[∆u] and Eu terms. Specifically,
linear and cubic interpolation can be used for the E[∆u] and Eu terms, respectively. This
gives a discretization with smaller stencils and, therefore, lower computational cost.

von Glehn et al. [177] provides an approach for time-dependent PDEs based on the same
ideas. The solution being constant in the normal direction of S provides more benefit in
this scenario since the Ruuth and Merriman [138] approach requires CP extensions after
every time step (or each Runge-Kutta stage). von Glehn et al. [177] are therefore able to
work within a method-of-lines formulation. In contrast, the Ruuth and Merriman [138]
approach cannot be formulated as a method-of-lines technique (although the Macdonald
and Ruuth [88] approach can).

16

Chapter 3

Scalability and Spatial Adaptivity

One may mistakenly reason that CPM is necessarily more computationally expensive
in memory and runtime than methods applied directly on S (e.g., FEM on a triangle
mesh) since CPM uses the higher-dimensional embedding space N (S) ⊆ Rd. However,
careful consideration of CPM’s scaling behaviour shows that this is not the case. The
computational domain (for the grid-based CPM) is a collection of Cartesian grid points
Ω(S) ⊂ N (S) with uniform spacing h. We show theoretically in Section 3.2 that CPM
scales with dim(S) rather than the dimension d of the embedding space because Ω(S) is
a subset of the tubular neighbourhood N (S), which has finite tube-radius. In practice,
naive implementations for the construction of Ω(S) can lead to undesirable scaling with d.
Therefore, we develop a memory and runtime efficient implementation to construct Ω(S)
that scales with dim(S). To further improve memory and runtime efficiency, we create
a custom BiCGSTAB solver in Section 3.3 to solve linear systems resulting from the dis-
cretization of CPM. Finally, Section 3.4 introduces a spatial adaptivity framework that
allows fewer DOFs to be used overall by restricting the use of high-resolution grids only
to regions of N (S) where it is required. We start with a review of the commonly used
discretization of CPM on the Cartesian grid Ω(S).

3.1 Discrete Setting of the Grid-Based CPM

In the discrete setting, the closest point cpS(xi) to each grid point xi ∈ Ω(S) is computed
and stored. Discrete approximations of the CP extension and differential operators are
needed to solve the embedding PDE. We illustrate how these operators are discretized for

17

the Laplace-Beltrami operator ∆[EuS](x). Both the CP extension [EuS](x) and the Lapla-
cian ∆ need to be approximated. Interpolation is used to approximate the CP extension
and finite differences (FDs) are used for differential operators.

The CP extension requires interpolation since cpS(xi) is generally not a grid point in
Ω(S). Thus, the manifold value [EuS](xi) = uS(cpS(xi)) is approximated by interpolating
from discrete values ui ≈ u(xi) stored at grid points xi ∈ Ω(S) surrounding cpS(xi). The
interpolation degree should be chosen such that interpolation error does not dominate
the solution. Furthermore, the interpolation degree should be high enough to ensure a
consistent approximation for the PDE, i.e., at least quadratic interpolation should be used
for PDEs involving second-order differential operators like the Laplacian. In practice,
cubic interpolation is commonly used for this scenario to ensure interpolation errors do not
dominate. Throughout, we use barycentric-Lagrange interpolation [17] with polynomial
degree p. This is an efficient and robust form of Lagrange interpolation for CPM [138,
Section 2.5].

For a given grid point xk ∈ Ω(S), we have the following approximation of the closest
point extension:

uS(cpS(xk)) ≈
∑
j∈Ik

wkj uj, (3.1)

where Ik denotes the set of indices corresponding to grid points in the interpolation stencil
for the query point cpS(xk) and wkj are the barycentric-Lagrange interpolation weights
corresponding to each grid point in Ik.

FD discretizations on Ω(S) are used to approximate a Cartesian differential operator
L as

Lu(xi) ≈
∑
k∈Di

likuk, (3.2)

where Di denotes the set of indices corresponding to grid points in the FD stencil centred
at the grid point xi. The FD weights are denoted lik for each xk with k ∈ Di. For example,
the common second-order centred-difference for the discrete Laplacian has weights 1/h2 if
k ̸= i and −2d/h2 if k = i.

With these CP extension and differential operator approximations, the Laplace-Beltrami
operator ∆SuS is approximated on Ω(S) as

∆uS(cpS(xi)) ≈
∑
k∈Di

lik

(∑
j∈Ik

wkj uj

)
. (3.3)

18

Matrices E and L can be constructed for the CP extension and discrete Laplacian,
respectively. The standard 7-point discrete Laplacian in R3 (5-point in R2) is used. Con-
structing the (sparse) matrices amounts to storing stencil weights for the i-th unknown

in the columns of row i. The discretization in (3.3) is equivalent to applying M̃ = LE
(introduced in Section 2.2.2) to the vector u = [u0, u1, . . . , uN]

T . Throughout this thesis,
L and E are applied directly when explicit time-stepping is used (see Section 2.2.1). For
implicit time-stepping and stationary PDEs we instead use the method discussed in Sec-
tions 2.2.2 and 2.2.3 with γ = 2d/h2. This choice of γ results in a numerically stable scheme
for implicit time-stepping [88] and improved diagonal dominance for the shifted Poisson
equation [24]. The matrix approximation of the Laplace-Beltrami operator becomes

M = diag(L) + (L− diag(L))E.

For example, to solve the discrete embedding PDE for ∆SuS = fS we solve the linear
system

Mu = f ,

for unknowns ui at grid points xi ∈ Ω(S) and where the components of the vector f are
fS(cpS(xi)).

Note that fS(cpS(xi)) is not computed using E since fS will only be specified on the
manifold (and sometimes only on a subset of S). In other words, E is an operator that can
only be applied to functions already on the grid Ω(S). In general, manifold PDEs involve
some given data on the manifold, which must first be extended onto Ω(S). Examples in-
clude known functions like the source fS , initial conditions uS(t = 0) for time-dependent
problems, or boundary conditions on S (or interior boundary conditions discussed in Chap-
ter 4). The necessary extension procedure depends on the specific representation of the
manifold and the data. For example, if fS(s) is given as a function on a parameteric mani-
fold r(s), the inverse of the parameterization r−1(s) could be used to obtain the parameter
si corresponding to cp(xi) so that fS(si) can be assigned at xi. Alternatively, if the data is
given discretely at the vertices of a triangulation, linear interpolation using the barycentric
coordinates of the triangle containing cpS(xi) can be used to obtain the value at cpS(xi).
The important point is that the extension must still be a CP extension: data at cpS(xi) is
assigned to xi ∈ Ω(S).

However, the solution to the original manifold PDE can be recovered from the solution
on Ω(S) at any yj ∈ S, j = 1, 2, . . . , J, using a similar interpolation matrix to E. The
only necessary change is to construct the interpolation matrix for the new locations yj
instead of cp(xi). This interpolation allows the solution to be transferred to any explicit
representation, e.g., triangle mesh or point cloud, that may be needed for downstream

19

rΩ(S)

S

Figure 3.1: The tube radius required for CPM calculated using the interpolation stencil
(orange) for cpS(xk) (white) and FD stencil (red).

tasks. For example, many of our results are visualized interpolating onto the vertices of
a triangulation. If the given manifold S is provided as a triangulation we use it; if a
manifold can be described by a parameterization, we connect evenly spaced points in the
parameter space to create a triangulation. The solution can be visualized in other ways
also. Demir and Westermann [39] proposed a direct raycasting approach based on the
closest points cpS(xi) for xi ∈ Ω(S). The set of cpS(xi) can also be considered a point
cloud and visualized as such. Both point clouds and triangulations are visualized using
polyscope [157] in our work.

3.2 Scalability

One could use a grid Ω(S) that fills a bounding box in Rd, but this choice is inefficient
since only a subset of those points (i.e., those near S) affect the numerical solution on
the manifold. It is only required that all grid points xj within the interpolation stencil
Ik of any closest point cpS(xk) have accurate approximations of the differential operators.
Barycentric-Lagrange interpolation uses a hypercube stencil of p+ 1 grid points in each
dimension, where p is the polynomial degree. Consider a hyper-cross FD stencil that uses
q grid points from the centre of the stencil in each dimension. Figure 3.1 shows an example
interpolation stencil with p = 5 (orange) and a FD stencil with q = 3 (red). These large
stencils are only used for illustration purposes; all our examples use p = 2 or 3 and q = 1.

20

To obtain accurate approximations of differential operators at all xj with j ∈ Ik, we
have to extend data not only to all xj, but also to all xi with i ∈ Dj for j ∈ Ik. This
mathematical description is rather terse, but one can think of sliding the centre of the
red FD stencil in Figure 3.1 over all orange grid points of the interpolation stencil. The
union of all grid points touched by both the interpolation and sliding FD stencils gives
the required grid points. An upper bound for the computational tube-radius, rΩ(S), can
therefore be computed as follows. The interpolation stencil Ik surrounds cpS(xk) in the
most symmetric way, i.e., cpS(xk) is in the centre cell for odd p, and nearest to the centre
grid point for even p. Consider the case when p is odd and place an FD stencil centre at
one of the corners of the interpolation hypercube. Then, calculate the distance between
the tip of the FD stencil and the centre cell’s grid point that is farthest away (see the two
grid points joined by the black line in Figure 3.1). The upper bound for rΩ(S) is therefore
[138, 87]

rΩ(S) = h

√
(d− 1)

(
p+ 1

2

)2

+

(
q +

p+ 1

2

)2

. (3.4)

When p is even, (3.4) also gives the correct upper bound on rΩ(S). A similar argument
applies, but uses the fact that cpS(xk) is at most h/2 away from the centre grid-point of
the interpolation stencil.

The fact that the CP extension is done for all grid points within a distance rΩ(S)
to S is the reason CPM does not need artificial boundary conditions on the edge of the
computational tube Ω(S). This property is in contrast to the level-set method for manifold
PDEs [18] where restricting Ω(S) for efficiency requires artificial boundary conditions,
which degrade the accuracy and convergence order of the method.

With the result in (3.4), our computational domain Ω(S) becomes all grid points xi
satisfying ∥xi − cpS(xi)∥ ≤ rΩ(S). Linear systems resulting from the embedding PDE
discretization are then solved on this tubular Ω(S). For large systems (usually resulting
from problems with d ≥ 3) memory consumption is dominated by the storage of Ω(S).
However, computation time is dominated by the linear system solve.

A misconception of CPM is that it is always more computationally expensive (in mem-
ory and computation time) than methods that solve the manifold PDE directly on S
because it is an embedding method. Even though the problem is solved on a higher-
dimensional space, it still scales with dim(S) rather than d because Ω(S) is within a tube
N (S) of radius rΩ(S). The scaling of CPM depends on the number of unknowns (a.k.a.
DOFs), which corresponds to the number of grid points in Ω(S).

21

The number of grid points N can be approximated by

N ≈ vol(N (S))
hd

, (3.5)

where N (S) has a tube radius rN (S) = rΩ(S). Denoting s = dim(S), the volume of N (S)
can be computed using Weyl’s tube formula [182, 52]:

vol(N (S)) =
(πr2Ω(S))

(d−s)/2

(1
2
(d− s))!

[s/2]∑
c=0

k2c(S)r2cΩ(S)

(d− s+ 2)(d− s+ 4) · · · (d− s+ 2c)
. (3.6)

where k2c(S) are integrals of complicated curvature functions, but importantly they are
independent of how S is embedded in Rd. For example, for a 1D curve embedded in 2D

area(N (S)) = 2rΩ(S)length(S). (3.7)

For a 1D curve embedded in 3D

vol(N (S)) = πr2Ω(S)length(S). (3.8)

For a 2D surface embedded in 3D

vol(N (S)) = 2rΩ(S)area(S) +
2r3Ω(S)

3

∫
S
KdS, (3.9)

where K is the Gaussian curvature of S.
The only term that depends on the grid resolution in (3.6) is rΩ(S), which is proportional

to h (see (3.4)). Simplifying (3.6) by lumping constants independent of h, we have

vol(N (S)) =
[s/2]∑
c=0

K2cr
d−s+2c
Ω(S) , (3.10)

Since rΩ(S) = hλ (where λ is the square-root term in (3.4)) the approximate number of
grid points is

N ≈
∑[s/2]

c=0 K2c(hλ)
d−s+2c

hd
=

[s/2]∑
c=0

K2c(hλ)
−s+2c. (3.11)

Thus, N = O(h−dim(S)) since as h → 0 the leading-order term is when c = 0. In other
words, N scales exponentially with exponent dim(S) as the grid spacing h shrinks. This

22

result was known intuitively in previous CPM work, but the above gives a theoretical
justification.

Ruuth and Merriman [138] used a simple procedure to construct Ω(S) that involved
storing a uniform grid in a bounding box of S and computing the closest point for every
grid point in the bounding box. Finally, an indexing array was used to label which grid
points are within a distance rΩ(S) of S. The procedure of Ruuth and Merriman [138] gives
linear systems that scale with dim(S), but memory usage and closest point computation
still scale with d.

Macdonald and Ruuth [88] used a breadth-first-search (BFS), starting at a grid point
near S, that allows the number of closest points computed to scale with dim(S). We use
a similar BFS when constructing Ω(S). However, Macdonald and Ruuth [88] still required
storing the grid in the bounding box of S, while we adopt sparse grid structures which
achieve efficient memory use by allocating only grid points of interest instead of the full
grid.

May et al. [98] overcame memory restrictions arising from storing the full bounding-box
grid by using domain decomposition to solve the PDE with distributed memory parallelism.
The code detailed by May et al. [99] is publicly available but requires specialized hardware
to exploit distributed memory parallelism.

Auer et al. [7] also used specialized hardware, i.e., their CPM-based fluid simulator
was implemented on a GPU. However, they employed a two-level sparse block structure
for memory-efficient construction of Ω(S) that is also suitable for the CPU. A coarse-level
grid in the bounding box of S is used to find blocks of the fine-level grid (used to solve
the PDE) that intersect S. Thus, the memory usage to construct the fine-level grid Ω(S)
scales with dim(S), as desired. The coarse-level grid still scales with d, but does not cause
memory issues because its resolution is much lower than the fine-level one. We adopt a
similar approach for constructing Ω(S), although our implementation is purely CPU-based.

We use a BFS procedure to only compute cpS near Ω(S). We adopt a sparse-grid
data structure [149] and allocate memory for it only as needed during the BFS. We took
inspiration from the development of level-set methods for surface evolution [123], which
followed a similar path to an efficient implementation (see, for example, [2, 126, 183, 120,
58, 111, 149]). The BFS can be started from any grid point x0 within rΩ(S) distance to the
manifold. The BFS for Ω(S) construction is detailed in Algorithm 1. The use of a BFS
could fail if S is composed of disjoint pieces. However, PDEs are only solved on a single,
connected manifold throughout this thesis.

The computational tube-radius rΩ(S) given by (3.4) is an upper bound on the grid
points needed in Ω(S). The stencil set approach to construct Ω(S) given by Macdonald

23

Algorithm 1: BFS to construct Ω(S)
Given x0 near S, i.e., with ∥x0 − cpS(x0)∥ ≤ rΩ(S)
Add x0 to Ω(S) and store cpS(x0)
Add x0 to the queue Q
while Q ̸= ∅ do

Set xcurrent ← Q.front()
for each neighbour xnbr of xcurrent do

if xnbr has not been visited then
Compute cpS(xnbr)
if ∥xnbr − cpS(xnbr)∥ ≤ rΩ(S) then

Add xnbr to Ω(S) and store cpS(xnbr)
Add xnbr to Q

end

end

end
Pop front of Q

end

and Ruuth [87, 88] can reduce the number of DOFs by including only the strictly necessary
grid points for interpolation and FD stencils. It was shown by Macdonald and Ruuth [87]
that the reduction in the number of DOFs is between 6-15% for S as the unit sphere.
We opted for implementation simplicity over using the stencil set approach due to this
low reduction in the number of DOFs. Furthermore, when the final interpolation of the
solution is performed for any y ∈ S (as discussed just above Section 3.2), the stencil set
approach does not always provide all the necessary grid points. Only the grid points needed
for the closest points to grid points, cpS(xi), are guaranteed.

Note that the method of computing closest points cpS , and its cost, will depend on the
underlying manifold representation. In Appendix A, we discuss the computation of closest
points for some popular representations, including parameterized manifolds, triangulated
surfaces, point clouds, signed-distance functions, and more general level-set functions (i.e.,
implicit manifolds). It is important that the closest point computation be accurate. For
example, nearest-neighbours can only be used for point clouds if the point density is high
enough (however, using the Fourier transform approach by [90] can soften the accuracy
requirement).

24

3.3 Linear System Solver

One approach to improve the computational efficiency of CPM so that it scales well for
large problems is to improve the linear system solver. The linear system resulting from
CPM could be solved with direct solvers, e.g., Eigen’s SparseLU is used in Section 3.4.3
for examples on 1D curves, but they are only appropriate for smaller linear systems (usu-
ally obtained with 2D embedding spaces). Iterative solvers are preferred for larger linear
systems (as noted in [88, 24]), particularly for problems involving 2D surfaces embedded
in R3 or higher.

Chen and Macdonald [24] developed a geometric multigrid solver for the manifold
screened-Poisson equation. May et al. [98, 99] proposed Schwarz-based domain decom-
position solvers and preconditioners for elliptic and parabolic manifold PDEs. The linear
system from CPM is non-symmetric due to the CP extension, therefore Eigen’s BiCGSTAB
is also an option for larger systems. However, we show below that using direct solvers or
Eigen’s BiCGSTAB with the construction of the full matrix system can be too computa-
tionally intensive.

We implement a custom BiCGSTAB solver (with OpenMP parallelism) that avoids
explicit construction of the full linear system. Our solver is more efficient, with respect to
memory and computation time, compared to Eigen’s SparseLU and BiCGSTAB implemen-
tations [54], as well as Intel MKL PARDISO [61]. Moreover, it circumvents the intricacies
associated with implementing multigrid or domain decomposition techniques.

Our BiCGSTAB implementation closely follows Eigen’s BiCGSTAB solver1, with key
differences for memory-efficiency and parallelization. This is achieved by exploiting a key
property of iterative Krylov solvers: explicit construction of the system matrix is not
required (in contrast to direct solvers). For iterative Krylov solvers, only the action of the
matrix on a given input vector is required (i.e., the matrix-vector product).

Specifically, we implemented our solver with the goal of solving linear systems Au = f
with

A = mI+ n [diag(L) + (L− diag(L))E] ,

where m,n ∈ R and common choices are m ∈ {0, 1} and n ∈ {1,−∆t,−∆t/2} (∆t
denoting a time-step size). This generalized form for A supports the applications described
throughout this thesis. For example, setting m = n = 1 results in the linear system for the
screened-Poisson equation uS + ∆SuS = fS . The matrices E and L are stored explicitly
and the matrix-vector product Au is computed as follows:

1https://eigen.tuxfamily.org/dox/BiCGSTAB 8h source.html

25

https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

1. Compute a = Eu.

2. Compute b = (L− diag(L))a.

3. Compute a = diag(L)u.

4. Return v = mu+ na+ nb.

OpenMP is used for parallelizing each of the steps over the number of grid points N .

In addition, iterative Krylov solvers allow for a preconditioner (i.e., approximate inverse
operator) for improving convergence of the linear solver. The preconditioner step requires
solving the equation Bz = r, where B is an approximation to A and r is the residual
vector. Depending on the particular problem, we either use a diagonal preconditioner
or a damped-Jacobi preconditioner. Computing the diagonal entries of A would require
extra computations since the full matrix is not constructed. In practice, however, we
found that the diagonal values of mI + ndiag(L) are a good enough approximation. (In
our experiments, we have verified that the infinity norm of the error matches the result
produced by Eigen’s solver.) For damped-Jacobi preconditioning, the iteration u ← u +
ωdiag(L)−1r is applied for a fixed number of iterations with ω = 2/3.

Our custom BiCGSTAB solver is faster and more memory efficient than Eigen’s SparseLU
and BiCGSTAB implementations [54] as well as the Intel MKL PARDISO. An example
of the improved efficiency is shown in Figure 3.2 for the heat problem discussed later in
Section 4.3.2 with Dirichlet and zero-Neumann interior BCs. Solving the heat equation
involves multiple linear system solves (i.e., one for each time step). SparseLU requires
the most computation time, even though it prefactors the matrix once and just performs
forward/backward solves for each time step. SparseLU also uses the most memory, as
expected. PARDISO leverages parallelism during factorization, enhancing the speed of
the initialization process compared to Eigen’s SparseLU. However, the forward/backward
solves are still performed sequentially, limiting the magnitude of the performance improve-
ment.

Table 3.1 gives the max and average computation time speedup, Tspdup, and memory
reduction, Mred, for the results in Figure 3.2. The computation time speedup compared to
Eigen’s SparseLU (similarly for BiCGSTAB and PARDISO) is computed as

Tspdup = T (SparseLU)/T (Ours),

where T (SparseLU) and T (Ours) are the computation times of SparseLU and our solver,
respectively. The memory reduction factor is calculated in an analogous manner with

26

Eigen SparseLU Eigen BiCGSTAB MKL PARDISO Ours

h

C
om

p
u
ta
ti
on

T
im

e

Dirichlet IBC

h

C
om

p
u
ta
ti
on

T
im

e

Neumann IBC

h

M
em

or
y

Dirichlet IBC

h

M
em

or
y

Neumann IBC

Figure 3.2: Top row: Computation time vs. h plots for the heat equation (4.14) with
Dirichlet and zero-Neumann interior BCs with four solver options. Bottom row: Memory
vs. h plots for the same problems and solvers. Our solver (orange) achieves the lowest
computation time and memory costs.

27

Table 3.1: Ratios of computation time Tspdup and memory usageMred for Eigen’s SparseLU
and BiCGSTAB as well as PARDISO as compared to our tailored BiCGSTAB solver, for
the experiments of Figure 3.2.

Solver IBC
Tspdup Mred

Max Avg. Max Avg.

Eigen’s SparseLU
Dirichlet 16.6 11.8 17.9 9.1
Neumann 86.2 38.3 18.1 9.1

Eigen’s BiCGSTAB
Dirichlet 9.5 6.6 1.9 1.8
Neumann 40.9 18.0 1.9 1.8

MKL PARDISO
Dirichlet 13.7 10.5 10.6 7.3
Neumann 54.2 27.3 10.3 7.0

computation times replaced by memory consumption. The max and average Tspdup and
Mred are computed over all h.

The speedup of our solver is significant compared to Eigen’s SparseLU and BiCGSTAB
as well as PARDISO. The memory reduction of our method is significant compared to
Eigen’s SparseLU and PARDISO, but less significant compared to Eigen’s BiCGSTAB.
The speedup exhibits problem-dependence since Tspdup factors in Table 3.1 are larger for
the zero-Neumann IBC compared to the Dirichlet IBC. However, as expected, Mred is not
problem-dependent.

3.4 Spatial Adaptivity

Another approach to reduce the computational cost of a PDE solver is to use a compu-
tational domain that adapts spatially depending on where resources are required. Spatial
adaptivity allows CPM to scale better for memory usage and runtime by using a higher
density of DOFs only in regions of S where they are needed most. Manteaux et al. [92]
survey adaptive methods that are used to improve the efficiency of many problems in com-
puter graphics. Most relevant to our work are spatially adaptive methods on structured
grids. For example, quadtrees and octrees have been used to spatially adapt deformable
body simulations [41, 147] and liquid simulations [158, 84, 85]. We show that the closest
point extension allows us to develop a spatial adaptivity framework that does not require
the implementation complexities of quadtrees/octrees. Our work is the first to provide
CPM with spatial adaptivity.

28

Figure 3.3: Three overlapping adaptive tubes N (Sm) (grey and red) for a spiral curve S
(blue). The boundary subsets N (∂Sm) are coloured darker and are the regions past the
green lines orthogonal to S at the boundaries of Sm.

3.4.1 Continuous Setting

To provide spatial adaptivity for CPM, the tube radius rN (S) must be allowed to vary over
different portions of S. We divide S into M pieces such that S = S1 ∪ S2 ∪ · · · ∪ SM .
Each subset Sm of S, for m = 1, 2, . . . ,M , is endowed with its own tubular neighbourhood
N (Sm) that has its own tube radius rN (Sm) (see Figure 3.3). Note that each subset Sm is
a disjoint piece of S except at the boundary between two subsets where S is duplicated.

The definition of N (Sm) given in (2.1) includes the half-tubular region surrounding the
boundary ∂Sm (darker regions in Figure 3.3). This half-tubular region, denoted N (∂Sm),
is the continuous analogue of the boundary subset Ω(∂S) defined in (4.1) given by

N (∂Sm) =
{
x ∈ N (Sm)

∣∣ cpSm(x) = cp∂Sm(x)
}
. (3.12)

These boundary subsets N (∂Sm) provide overlaps of the tubular neighbourhoods N (Sm)
that can be used to globally join the embedding PDE solve on each subset. One could
consider joining the problems on each Sm using a boundary condition on ∂Sm, e.g., similar
to how approximate Dirichlet BCs are used in the alternating Schwarz domain decomposi-
tion method [173]. However, the CP extension in CPM provides us with a condition that
is known to hold exactly.

29

x ∈ N (∂S2)

x ∈ N (∂S1)
cpS1(x)

cpS2(x)cpS2(x)

cp∂S1(x) = cp∂S2(x)

Figure 3.4: Data uS on the manifold (blue curve) is CP extended to a point x ∈ N (S2)
(black) by assigning the value of uS at cpS1(x) (blue point) instead of the value at cp∂S2(x)
(white). Similarly for x ∈ N (∂S1) the value of uS at cpS2(x) is CP extended to x instead
of the value at cp∂S1(x).

Consider an example with M = 2 so that there is one boundary between S1 and S2

given by ∂S1 = ∂S2 = S1 ∩ S2. Denote the CP extension operator for N (S), N (S1), and
N (S2) by E, E1, and E2, respectively. Figure 3.4 illustrates the following scenario. The CP
extension of manifold data uS for x ∈ N (∂S1) would be E1uS(x) = uS(cp∂S1(x)). However,
this is incorrect for the global problem since globally EuS = uS(cpS) and cp∂S1 ̸= cpS
on N (∂S1). Since cpS2 = cpS on N (∂S1), we instead perform the CP extension for
x ∈ N (∂S1) using cpS2 :

E1uS(x) ≡ E2uS(x) = uS(cpS2(x)), for x ∈ N (∂S1), (3.13)

and vice versa for x ∈ N (∂S2). In short, points in the boundary subset for one region
simply use the CP extension for the neighbouring region. CPM can then be applied on
N (S1) and N (S2) independently with no other changes to the method, e.g., no artificial
or approximate BCs are needed on N (∂S1) and N (∂S2) since (3.13) provides a sufficient
condition to couple the problem globally.

In general, Sm can be bordered by more than one subset of S. Therefore, EmuS(x)
for x ∈ N (∂Sm) will be composed of the CP extension from multiple subsets of S. Let
Jm denote the set of indices corresponding to the subsets of S that border Sm. If x ∈

30

N (∂Sm) ∩ N (Sj), j ∈ Jm, then

EmuS(x) ≡ EjuS(x). (3.14)

3.4.2 Discrete Setting

In the discrete setting, we construct computational tubes Ω(Sm) within each tubular neigh-
bourhood N (Sm) for m = 1, 2, . . . ,M . The computational tubes have different tube-radii,
rΩ(Sm), given by (3.4). Note that one could choose different grid spacings h, interpolation
degree p, or finite difference stencil hyper-cross size q within each Ω(Sm). In our numerical
examples, however, we only choose a unique grid spacing hm for the M subsets.

If cpSm can be defined independently for each subset Sm, then the construction of
Ωm(S) can directly use the breadth-first-search approach given in Algorithm 1. However,
this is rarely the case as only cpS is usually provided for the entire manifold S. There-
fore, our approach to construct Ωm(S) first constructs Ω(Sm) \ Ω(∂Sm), then grows the
computational tube by adding grid points for Ω(∂Sm). An added benefit of this approach
is that cp∂Sm is not necessary, since the CP extension Em only involves cpSm or cpSj

for
j ∈ Jm. Both cpSm and cpSj

are equal to cpS for grid points xi ∈ Ω(Sm) \ Ω(∂Sm) and
xi ∈ Ω(Sj) \ Ω(∂Sj).

Our current implementation constructs the full Ω(S) for every hm resolution. Of course,
this is an inefficient implementation in both memory and runtime. It is used to illustrate the
benefit of our adaptivity framework for the solver runtime improvement. Future work will
include constructing only the subsets Ω(Sm), which would allow for an understanding of
the practical overhead requirements of setting up the adaptive computational tube Ω(S1) ∪
Ω(S2) ∪ · · · ∪ Ω(SM).

A sizing function s(y) for y ∈ S is used to determine the subsets Sm, m = 1, 2, . . . ,M .
The sizing function is problem-dependent and could be determined in many ways. For
example, properties of S could be used to compute s(y), such as the local feature size
of S or the curvature of S. Properties of the manifold PDE to be solved could also be
used, e.g., subsets of S where large gradients in uS are expected should use smaller hm.
Furthermore, error estimates could be used to construct s(y). Error estimates for CPM
have not been studied, but they would be an interesting area of future research. Currently,
s(y) is manually constructed to determine Sm. Important future work would involve
automatically constructing optimal s(y) to provide the largest reduction in the number of
DOFs in the linear system.

31

In the discrete setting, the value of s(y) is given at a fixed set of points yk ∈ S for
k = 1, 2, . . . , K. These yk are points where the final solution is desired, e.g., vertices of
a mesh to be used for visualization. For each of the full Ω(S) with resolutions hm, m =
1, 2, . . . ,M, we find the nearest neighbour in yk to each cp(xi) for grid points xi ∈ Ω(S).
The grid point xi is then assigned to a subset Ω(Sm) based on s(y⋆k) of its nearest neighbour
y⋆k. This determines the interior of the subsets Ω(Sm) \ Ω(∂Sm). We then grow Ω(∂Sm)
by adding any grid point that is part of the interpolation or finite-difference stencil of all
xi ∈ Ω(Sm) \ Ω(∂Sm) that are not already part of the subset. We also tag each part of
Ω(∂Sm) with the index j of its bordering subsets Ω(Sj), j ∈ Jm, so the CP extension on
Ω(∂Sm) can be constructed as in (3.14).

As mentioned above, the only change in CPM necessary for our spatial adaptivity
framework is the CP extension on Ω(∂Sm). The FD stencils in each Ω(Sm) are the same as
if Ω(Sm) is an independent computational domain. There is also no theoretical restriction
on the resolutions hm between the bordering subsets. However, it would be interesting
to investigate whether restrictions on the change in resolution between bordering subsets
affect the accuracy and/or scalability of our spatial adaptivity framework in future work.

3.4.3 Numerical Results

Adaptivity has been used in computer graphics to allow efficient implementations of highly
realistic simulations of numerous phenomena. Manteaux et al. [92] provides a review of
these methods, highlighting the large number of criteria used to invoke adaptivity. These
criteria could be used to construct the sizing function s(y) to be used in our CPM adaptivity
framework. In this section, we explore sizing functions based on solution gradients, local
feature size, and/or curvatures.

Solution Gradients

Fine grid resolutions are required to capture large variations in the solution of a PDE. When
the large variations are localized to a small region of the computational domain, e.g., shocks
in fluid simulations [179], spatial adaptivity is an effective approach to improve efficiency.

To study the ability of our approach to improve efficiency for a solution with large,

32

−1

1

Figure 3.5: Solution of (3.15) on the arc (coloured) computed using the adaptive tube with
h1 = h3 = 0.025 on Ω(S1) and Ω(S3) (black grid) and h2 = 0.008 on Ω(S2) (red grid).

localized solution gradients, we solve the Poisson equation

∆SuS = fS ,

uS

(
−3π

4

)
= − tanh(100) ≈ −1,

uS

(π
4

)
= tanh(100) ≈ 1,

(3.15)

on the arc given by the portion of the unit circle with θ ∈ [−3π
4
, π
4
]. The exact solution is

taken as

uS(θ) = tanh

(
100

(
2θ

π
+

1

2

))
, (3.16)

giving

fS(θ) = −
80000

π2

tanh
(
100

(
2θ
π
+ 1

2

))
cosh2

(
100

(
2θ
π
+ 1

2

)) . (3.17)

The solution (3.16) is approximately −1 for θ < −π
4
and then rapidly transitions to ap-

proximately 1 when θ > −π
4
(see Figure 3.5).

33

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−4 10−3 10−2 10−4 10−3 10−2

h2 h2

14

12

10

8

6

4

2

0

E
rr
or

Uniform
Adaptive
Slope = 2

U
n
if
or
m
/A

d
ap

ti
ve

LU Decomp.
Solve
DOFs

Figure 3.6: Left: Max-norm error as h2 varies when solving (3.15). The max-norm is
computed from 100 equally spaced points in the θ parameter. Right: Improvement factor
of the adaptive approach compared to the uniform approaches for LU decomposition time,
solve time, and number of DOFs as h2 varies. Timings are average values from 20 trials.

We divide S into three subsets S1, S2, S3 given by θ ∈ [−3π
4
,−3π

10
], θ ∈ [−3π

10
,−2π

10
],

θ ∈ [−2π
10
, π
4
], respectively. CPM is used to solve (3.15) with cubic interpolation, second-

order centred finite-differences, and second-order BCs (see Section 4.1) on the adaptive
computational tube Ω(S1) ∪ Ω(S2) ∪ Ω(S3). The tube radii of Ω(S1) and Ω(S3) are held
constant with rΩ(S1) = rΩ(S3) computed using (3.4) with p = 3, q = 1 and h1 = h3 = 0.025.
To investigate the effect of the grading between subsets we vary rΩ(S2) using h2 = 0.025×2−i
for i = 1, 2, . . . , 8 and some arbitrarily chosen values h2 = 0.008, 0.0045, 0.00229, 0.00113,
0.0005, 0.000283, 0.0001426. Note that these arbitrarily chosen h2 give a Ω(S2) that is not
aligned with the other two subsets, as seen in Figure 3.5 where h2 = 0.008.

Eigen’s SparseLU is used to solve the linear system since BiCGSTAB is slower for this
example embedded in R2. Figure 3.6 (left) shows a convergence study for the max-norm
error with the adaptive computational tube and a uniform computational tube with h = h2.
The errors using the adaptive and uniform computational tubes are nearly identical (lying
on top of each other in the figure) and show the expected second-order convergence. Note
that the error on S is dominated by the error on S2, which is why the max-error of the
adaptive and uniform solutions match.

Figure 3.6 (right) shows the improvement in efficiency of the adaptive approach by
dividing the LU decomposition time, forward/backward solve time, and number of DOFs

34

of the uniform approach by the corresponding adaptive approach values. When h = h2 =
0.0125, the uniform LU decomposition and linear system solve runtimes are actually 5%
faster than the adaptive. However, all other h2 give an improvement in runtime (by 1.8×–
13.4×) for the adaptive method with both the LU decomposition and linear system solve.
The improvement factor of the LU decomposition closely follows the factor for the DOFs of
the linear system (c.f., Figure 3.6 (right) blue and yellow), which seems to plateau around
10. However, the improvement factor for the solve runtime continues to increase over the
factor for the DOFs as h2 → 0.

Local Feature Size

Manifolds with small local feature size (LFS) can drastically increase CPM’s computational
cost if a uniform computational tube is used. With a uniform computational tube, the
tube radius must satisfy rΩ(S) < reach(S) to obtain accurate results. This leads to a large
number of unnecessary DOFs for subsets Sm of S where LFS > reach(S). Therefore,
an adaptive computational tube can improve the computational cost of CPM by allowing
larger rΩ(Sm) for subsets Sm with LFS > reach(S).

Curve in R2. Consider solving the Poisson equation

−∆SuS =

(
2π

L

)2

sin

(
2πs

L

)
,

uS (0) = uS (L) = 0,

(3.18)

on the hyperbolic spiral, which is parameterized by

r(θ) =

cos θθsin θ
θ

 , (3.19)

and is shown in Figure 3.7 with θ ∈ [0.3, 23]. The solution to (3.18) is uS = sin(2πs/L),
where L is the total length of the spiral. Note that the arc-length s is used in (3.18), which
can be computed from θ via

s =

∫ θ

θ0

√
1 + θ2

θ2
dθ =

[
ln
(
θ +
√
1 + θ2

)
−
√
1 + θ2

θ

]θ
θ0

. (3.20)

35

Table 3.2: Attribute comparison when solving (3.18) on the hyperbolic spiral with uniform
computational tubes versus adaptive. Timings are average values over 20 trials. The error
is computed at 5000 equally spaced points in θ parameter.

Uniform h = 0.08 Uniform h = 0.00125 Adaptive
DOFs 470 (0.1×) 34750 (6.7×) 5128
LU Decomp. Time (s) 1.6× 10−3 (0.1×) 8.6× 10−2 (5.3×) 1.6× 10−2

Solve Time (s) 1.9× 10−5 (0.1×) 1.4× 10−3 (6.9×) 2.0× 10−4

Max Error 43.8 (1626×) 4.4× 10−4 (0.02×) 2.7× 10−2

Average Error 41.8 (7326×) 4.79× 10−6 (0.009×) 5.7× 10−3

The LFS of the hyperbolic spiral decreases as θ increases, forcing rΩ(S) to be small
near θ = 23. To obtain an accurate solution, shown in Figure 3.7 (middle row), we take
h = 0.00125 when using cubic interpolation, second-order centred finite-differences, and
second-order BCs so that rΩ(S) < reach(S). However, such a fine h is unnecessary for much
of S; the Ω(S) cannot even be seen until the second zoom (blue) in Figure 3.7 (middle
row), which highlights the multiresolution nature of the hyperbolic spiral. Unfortunately,
using a uniform Ω(S) with larger h is not a viable option. Figure 3.7 (top row) shows that
using h = 0.08 gives an extremely inaccurate solution. This inaccurate solution is due to
CPM mixing data from parts of S that are close in Euclidean distance but far in geodesic
distance because h = 0.08 does not resolve S well for larger θ.

The adaptive computational tube Ω(S1) ∪ Ω(S2) ∪ · · · ∪ Ω(S7) in Figure 3.7 (bottom
row) provides an improvement in computational efficiency at the cost of approximately
10× the range of errors using h = 0.00125 uniformly. The subsets S1,S2, . . . ,S7 are
divided at θ = 1.55, 2.3, 4.2, 6.8, 10, 17 and hm is halved between subsets as θ increases
starting with h1 = 0.08. Table 3.2 shows that using Ω(S1) ∪ Ω(S2) ∪ · · · ∪ Ω(S7) saves
almost 7× the number of DOFs and reduces the solve time by a similar factor. The LU
decomposition of the linear system requires the most runtime when solving the system,
which is about 5× faster with our adaptive approach. The adaptive CPM requires around
10× the computational cost compared to using Ω(S) with h = 0.08, but this Ω(S) produces
an unusable solution. The max and average errors of our solution are about 50× and 100×
larger, respectively, than the solution with a uniform h = 0.00125, but the solutions are
visually indistinguishable.

Surface in R3. The runtimes for curves embedded in R2 are small enough that adaptivity
may be of little practical importance. However, for surfaces embedded in R3, adaptivity can
provide practical benefits in runtime. Furthermore, the reduction in the number of DOFs

36

43

1.1

0.002

0.0004

0.02

0.003

Figure 3.7: Error in the solution of (3.18) on a hyperbolic spiral using a uniform tube with
h = 0.08 (top row, black) or h = 0.00125 (middle row, black) or an adaptive tube with
varying hm (bottom row, black and red).

37

can mean the difference between being able to store the computational tube in memory
or not. In geometry processing and computer graphics in general, the focus is usually on
surfaces in 3D, but CPM also extends to problems in any dimension where these runtime
and memory savings would be even more advantageous.

Consider a spiral sheet surface constructed by extending the hyperbolic spiral in the
z-direction, creating a surface akin to a rolled-up sheet of paper with width W (see Fig-
ure 3.9). The example below takes θ ∈ [0.3, 12.5] and z ∈ [0, 4]. We solve the screened-
Poisson equation

−∆SuS + uS = fS , (3.21)

on this surface with zero-Neumann boundary conditions and

fS(s, z) =

(
1 +

4π2(L2 +W 2)

L2W 2

)
cos

(
2πs

L

)
cos

(
2π(z − z0)

W

)
. (3.22)

The exact solution to (3.21) with (3.22) is

uS(s, z) = cos

(
2πs

L

)
cos

(
2π(z − z0)

W

)
. (3.23)

Figures 3.8–3.10 show the computational tubes, the solution, and the errors when solv-
ing (3.21) on the spiral sheet using a uniform Ω(S) with h = 0.064 (top row) and h = 0.008
(middle row) and an adaptive Ω(S1) ∪ Ω(S2) ∪ · · · ∪ Ω(S5) (bottom row). The subsets
S1, . . . ,S5 are taken to be constant in the z parameter and divided at θ = 1.7, 3.1, 4.7, 11.
The resolutions used on Ω(S1), . . . ,Ω(S5) are hm = 0.064, 0.032, 0.016, 0.012, 0.008, re-
spectively. The same interpolation and finite-difference methods that were used for the
hyperbolic spiral above are used here, but only first-order BCs are imposed (which are the
natural BCs for CPM as explained later in Section 4.1). Our BiCGSTAB solver is used for
this problem embedded in R3 since it is more efficient than SparseLU.

In Figure 3.8 (top row) the Ω(S) with h = 0.064 is unable to resolve the tight roll of the
sheet. This results in a solution that is visually incorrect (see Figure 3.9) and quantitatively
has large errors (see Figure 3.10). Note that the colour scales in Figures 3.9 and 3.10 are
set to the range of values for the adaptive approach. All values outside this range for the
uniform solution with h = 0.064 are capped at the purple (min) or yellow (max) colours.
The actual range of the uniform solution with h = 0.064 is −1.5 to 1.4, and the error range
is −0.5 to 0.4. The max and average errors are 25× and 178× larger, respectively, for the
uniform solution with h = 0.064 compared to the adaptive solution (see Table 3.3).

To obtain a uniform Ω(S) with rΩ(S) < reach(S) we must take h = 0.008. This results
in a Ω(S) with ∼ 2.9 million DOFs and requires about 22 minutes to compute the solution

38

Uniform h = 0.064

Uniform h = 0.008

Adaptive

Figure 3.8: Computational tubes used when solving (3.21) on the spiral sheet with the
uniform computational tubes and the adaptive tube.

39

−1.05 1.07

Uniform h = 0.064

Uniform h = 0.008

Adaptive

Figure 3.9: Numerical solution when solving (3.21) on the spiral sheet with the uniform
computational tubes and the adaptive tube.

40

−0.05 0.07

Uniform h = 0.064

Uniform h = 0.008

Adaptive

Figure 3.10: Solution errors when solving (3.21) on the spiral sheet with the uniform
computational tubes and the adaptive tube. The error is shown on the spiral sheet directly
(left column) and with the sheet unrolled (right column) and scaled such that L = W = 1.

41

Table 3.3: Attribute comparison when solving (3.21) on the spiral sheet with uniform
computational tubes versus adaptive. The error is computed at 40,000 equally spaced
points in θ and z parameters.

h = 0.064 h = 0.008 Adaptive
DOFs 45,609 (0.1×) 2,862,171 (6.5×) 440,979
Solver Init. Time (s) 2.3× 10−2 (0.08×) 3.3 (11.7×) 2.8× 10−1

Solve Time (s) 4.2 (0.06×) 1301 (17.2×) 75.5
Solver Iterations 229 (0.3×) 1643 (1.5×) 1094
Max Error 1.6 (24.6×) 9.2× 10−3 (0.14×) 6.8× 10−2

Average Error 7.4× 10−1 (178×) 1.7× 10−3 (0.4×) 4.1× 10−3

(see Table 3.3). Figure 3.9 shows that the adaptive computational tube can produce a
solution that is visually indistinguishable from the uniform solution with h = 0.008 but
with 6.5× less DOFs and in only 76 seconds (around 17× faster). The max error is
about 7× larger for our adaptive solution but only 2.5× larger on average (see Table 3.3).
Figure 3.10 (bottom row) also shows that the error is concentrated near the boundary of
S, suggesting that it would be preferable to consider second-order BCs (which basically
only adds an extra closest-point evaluation for xi ∈ Ω(∂S)).

Curvature and Solution Gradients

A final example explores adaptivity with a more general S that has localized subsets of
high curvature relative to the rest of S. Curvature is related to LFS since for regions of S
where there are no bottlenecks (regions of S that are distant in geodesic distance but close
in Euclidean distance), the LFS will be equal to the radius of curvature. Furthermore,
this example exhibits both high manifold curvature and relatively large solution gradients
occurring within the same regions of S.

The screened-Poisson equation (3.21) is solved on the doughnut mesh shown in Fig-
ure 3.11. To illustrate the ability of our adaptivity framework to improve efficiency
when there are both large solution gradients and high curvatures, we compute fS using
a manually constructed uS exhibiting these properties. The solution uS is constructed
as follows. The principal curvatures κ1 and κ2 of the doughnut are computed using
geometry-central [154]. We threshold max(|κ1|, |κ2|) to determine the vertices of the
CPGP letters on the doughnut. Then uS = sin(Cθ) is taken, where θ ∈ [0, 2π] is the angle
in the xz-plane (y is the up direction) and C = 3 everywhere except for the CPGP letters
where C = 30.

42

The screened-Poisson equation is only well-defined if the solution is at least C2-smooth.
However, there is a discontinuity in our constructed uS around the borders of the CPGP
letters due to the change of C. We smooth uS by CP extending it onto a computational
tube Ω(S) with h = 0.01 to give u and then set u at each grid point xi ∈ Ω(S) to the
average value of the six neighbouring grid points of xi. The CP extension of uS here is
an example where an interpolation scheme specific to the discrete representation of the
manifold must be used (as was discussed at the start of this chapter for initial conditions,
boundary conditions, and known functions given in a problem definition). The solution uS
is only given at the vertices of the triangle mesh, but we need to know uS at cp(xi) for all
grid points xi ∈ Ω(S). Linear interpolation using the barycentric coordinates of triangles
in the mesh is used to CP extend uS onto Ω(S). Cubic interpolation of u in Ω(S) is used
to obtain the smoothed version of uS back at the vertices of the triangulation.

Due to the discrete construction scheme of uS discussed above, there is no exact equation
for uS . Furthermore, a general triangle mesh does not provide an exact equation for ∆SuS
either, so we cannot compute an exact fS from uS . We can however approximate fS using
CPM’s discrete operators. We once again CP extend uS (now smoothed) onto an Ω(S) but
with h = 0.004 to give u. Then, CPM’s discrete operators approximating the left-hand-side
of (3.21) are applied to u giving f . We finally obtain fS at vertices of the mesh using cubic
interpolation of f on Ω(S) so it can be used with any resolution Ω(S).

Figure 3.11 (left column) shows the solution to (3.21) using uniform Ω(S) with h = 0.01
and h = 0.005, as well as, an adaptive Ω(S1) ∪ Ω(S2). The subset Ω(S1) away from the
CPGP letters uses h = 0.01 (black in Figure 3.11 bottom right) and h = 0.005 is used for
Ω(S2) (red in Figure 3.11 bottom right). We consider u|h=0.005 computed on the uniform
Ω(S) with h = 0.005 to be a reference solution. The difference between u|h=0.005 and
u|h=0.01 and the solution on the adaptive tube uadaptive shows that u|h=0.01 has a larger
error around the CPGP letters than uadaptive (see Figure 3.11 right column).

The max and average error in u|h=0.01 is about 3× and 2× larger than uadaptive, respec-
tively (see Table 3.4). The runtime of the solver for the adaptive approach is about 11×
faster than the uniform approach with h = 0.005 and is visually similar, unlike u|h=0.01

where visual differences are apparent. The additional runtime of the solver when using the
adaptive tube Ω(S1) ∪ Ω(S2) to compute a satisfactory solution is only about 8% more
than the uniform Ω(S) with h = 0.01, which makes the adaptive approach the obvious
choice for this scenario.

43

Uniform h = 0.01

Uniform h = 0.005

Adaptive

u|h=0.01 − u|h=0.005

uadaptive − u|h=0.005

Ω(S1) ∪ Ω(S2)

−1.3 1.9 −1.2 0.3

Figure 3.11: Left: Solutions using uniform Ω(S) with different h and an adaptive tube.
Right: Solution differences (top and middle) and the adaptive tube (bottom).

44

Table 3.4: Attribute comparison when solving the screened-Poisson equation on the dough-
nut with uniform computational tubes versus adaptive. The error is computed at the
983,040 vertices of the mesh.

h = 0.01 h = 0.005 Adaptive
DOFs 737,364 (0.9×) 2,952,748 (3.7×) 804,850
Solver Init. Time (s) 0.7 (3.2×) 11.9 (51.5×) 0.2
Solve Time (s) 137 (0.9×) 1660 (11.1×) 149
Solver Iterations 1152 (1.01×) 3453 (3.04×) 1135
Max Error 1.2 (2.9×) N/A 0.4
Average Error 0.13 (1.7×) N/A 0.077

3.5 Summary and Future Work

Important discrete implementation details of the grid-based CPM were explored in this
chapter to create an implementation that is memory and runtime efficient. Scaling to
problems that require a large number of DOFs (and therefore memory) was accomplished
using a BFS construction of the computational tube with a sparse grid data structure.
Our custom BiCGSTAB solver improved both memory and runtime efficiency by up to 2×
and 41× compared to Eigen’s BiCGSTAB implementation, respectively. Spatial adaptivity
allowed our linear system to have fewer DOFs, concentrating DOFs only in regions of S
where they are needed, which improved runtime by up to 17×.

We focused on developing a runtime and memory-efficient implementation that allows
the treatment of higher-detail manifolds without specialized hardware. However, further
improvements could be achieved by incorporating our approaches for the computational
tube construction, linear system solver, and spatial adaptivity on specialized hardware such
as a GPU or distributed memory machine. NVIDIA Warp [91] would be a good candidate
for GPU computing since sparse grid support is already available with NanoVDB [112].
Our spatial adaptivity framework should be easy to incorporate into the domain decom-
position method of May et al. [98] since it uses overlapping computational tubes, enabling
distributed memory parallelism.

In practice, we have found that the convergence order of our spatial adaptivity frame-
work degrades if there are large solution gradients where the subsets Ω(Sm) overlap. More
perplexing is that when two subsets Ω(S1) and Ω(S2) overlap but have the same resolution
h1 = h2, the convergence order does not degrade. Understanding the cause of this loss of
accuracy when h1 ̸= h2 is interesting future work.

45

The fact that we use overlapping subsets Ω(Sm) also means that extra DOFs are in-
troduced. A nonoverlapping adaptivity framework might be better for computational ef-
ficiency. The use of overlapping subsets in our framework benefits from the reuse of code
for CPM on uniform Ω(S) since the same interpolation and finite-difference stencils are
used. A nonoverlapping adaptivity framework would require interpolation (with at least
quadratic polynomials) and finite-differencing stencils that can handle resolution changes
at ∂Sm, such as those used by Min and Gibou [103] or scattered data interpolation [74]
and radial-basis-function finite-differences [128].

46

Chapter 4

Interior Boundary Conditions

Many geometry processing techniques require the solution to PDEs on manifolds embedded
in R2 or R3, such as curves or surfaces. When the manifold S is open (i.e., its geometric
boundary ∂S ̸= ∅) some choice of boundary condition (BC) must usually be imposed on
∂S (e.g., Dirichlet, Neumann, etc.). We will refer to these as exterior boundary conditions.
In many applications, however, similar types of boundary conditions may be needed at
locations on the interior of S, irrespective of S being open or closed. In this case, interior
boundary conditions (IBCs) should be enforced on a subset C ⊂ S, which typically consists
of points C on a 1D curve S, or points and/or curves C on a 2D surface S.

Input manifolds can take many forms (e.g., triangle meshes, parametrizations, point
clouds, implicit functions, etc.). Typically, one must generate a mesh to apply finite
element-type techniques or derive specialized discretization procedures for each distinct
manifold representation. Existing numerical methods for manifold PDEs support IBCs in
various ways depending on the chosen manifold representation and method of discretiza-
tion.

In the Dirichlet case, the nearest degrees of freedom (DOFs) to the interior boundary
can often simply be assigned the desired Dirichlet value. For example, on a point cloud
representation, the nearest interior points in the cloud could be set to the Dirichlet value,
similar to how exterior Dirichlet BCs have been handled in point clouds [80]. With triangle
mesh-based discretizations (finite element, discrete exterior calculus, etc.) one can similarly
enforce the Dirichlet condition at the nearest surface vertices to the interior boundaries.
However, enforcing the IBC at the nearest DOF is inaccurate if the DOF does not lie exactly
on the interior boundary C (i.e., the mesh does not precisely conform to C). Specifically,
an error of O(∥h∥) is introduced where ∥h∥ is the distance between the nearest DOF

47

and C. Moreover, only Dirichlet conditions can be treated in this manner; depending on
the chosen manifold representation and/or discretization, it can be nontrivial to enforce
Neumann boundary conditions.

With a surface triangulation, a more accurate approach is to remesh the surface with
constrained Delaunay refinement (possibly with an intrinsic triangulation) so that vertices
or edges of the mesh conform to C, as discussed for example by Sharp and Crane [152].
However, this necessarily introduces remeshing as an extra preprocess. Another mesh-based
approach, which avoids remeshing, is the extended finite element method [106, 66], which
uses modified basis functions to enforce non-conforming boundaries or discontinuities.

We propose instead to address such problems in a unified manner through a novel
extension of CPM to handle IBCs. To enable support for IBCs we derive a method that
implicitly partitions the embedding space across interior boundaries. We then adapt CPM’s
finite difference and interpolation stencils to respect this partition while preserving second-
order accuracy.

Most similar to our approach is the method of Shi et al. [159] who enforced Dirichlet
IBCs for a manifold PDE method based on level sets. As with CPM, solving surface
PDEs with level sets [18] involves extending the problem to the surrounding embedding
space. For such embedding methods, it is crucial not only to account for the interior
boundary itself but also its influence into the associated embedding space. To do so, the
approach of Shi et al. [159] explicitly constructs a triangulation to represent a normal
manifold S⊥ (see (4.2)) extending outwards from the interior boundary curve C (notably
contrasting with the implicit nature of level sets). They then perform geometric tests
to determine if stencils intersect S⊥ and modify the discretization locally. We instead
introduce a simple triangulation-free approach to determine if stencils cross S⊥ that only
involves closest points, bypassing explicit construction of S⊥. Moreover, such level-set
approaches necessarily require a well-defined inside and outside, which makes handling open
manifolds, nonorientable manifolds, and manifolds of codimension-two or higher impossible
with a single level set.

For Dirichlet IBCs in CPM, Auer et al. [7, 6] fixed all the nearest DOFs in the embedding
space within a ball centred around C (considering only the case when C is a point). This
again is only first-order accurate, incurring an O(h) error, where h is the grid spacing of
Ω(S). Enforcing the IBC over a ball effectively inflates the boundary region to a wider
area of the surface. That is, a circular region of the surface around the point C will be
fixed with the prescribed condition. We show in Section 4.3 that this approach can also
be applied to boundary curves, but the observed error is much larger compared to our
proposed method. Moreover, it cannot be applied when Dirichlet values differ on each side

48

of C.
Our proposed CPM extension overcomes several limitations of the existing CPM (Dirichlet-

only) IBC treatment of Auer et al. [2012]. We demonstrate that our method can easily be
extended to second-order, for both Dirichlet and zero-Neumann cases. It can also handle
jump discontinuities in Dirichlet values across interior boundary curves. Furthermore, our
approach supports what we call mixed boundary conditions, e.g., Dirichlet on one side and
Neumann on the other. Both jump discontinuities and mixed IBCs are useful for various
applications, such as diffusion curves [122].

The key attribute of our IBC approach that allows the above flexibility for BC types is
the introduction of new DOFs near C. This idea shares conceptual similarities with virtual
node algorithms [107], which have been used for codimension-zero problems [15, 56, 11].
It is also similar to the CPM work of Cheung et al. [25], who used new DOFs near sharp
features of S (albeit with the radial-basis function discretization of CPM).

We demonstrate our method’s convergence behaviour on selected model PDEs and ex-
plore several geometry processing problems: diffusion curves on surfaces, geodesic distance,
tangent vector field design, harmonic map construction, and reaction-diffusion textures.
Our proposed approach thus offers a powerful and flexible new tool for a range of geometry
processing tasks on general manifold representations.

4.1 Exterior Boundary Conditions for Open Mani-

folds

Our proposed approach for IBCs in Section 4.2 builds on existing CPM techniques for
applying exterior BCs at open manifold boundaries, which we review here. A subset
Ω(∂S) ⊂ Ω(S) of grid points called the boundary subset is used to enforce exterior BCs.
It consists of all xi satisfying cpS(xi) ∈ ∂S, i.e., grid points whose closest manifold point
is on the boundary of S. Equivalently,

Ω(∂S) =
{
xi ∈ Ω(S)

∣∣ cpS(xi) = cp∂S(xi)
}
, (4.1)

where cp∂S is the closest point function to ∂S. Geometrically, Ω(∂S) is a half-tubular
region of grid points past ∂S, halved by the manifold orthogonal to S at ∂S defined by

S⊥ = {x ∈ N (S) | x = y + tnS(y), y ∈ ∂S, |t| ≤ rΩ(S)}, (4.2)

when S is codimension one. The manifold normal at y ∈ ∂S is defined as the limiting
normal nS(y) = limz→y nS(z), where z ∈ S and nS(z) is the unit normal of S at z.

49

Ω(∂S)

Ω(S)

∂S

S⊥ S

Figure 4.1: The boundary subset Ω(∂S) (purple points) for a curve S (blue) comprises
those grid points in Ω(S) (black grid) whose closest point is on the boundary ∂S (white
point). The points xi ∈ Ω(∂S) are those past the normal manifold S⊥ (green) based at
∂S.

Figure 4.1 illustrates the boundary subset Ω(∂S) and S⊥ for a 1D curve embedded in
R2. Note that (4.2) can easily be generalized for higher-codimensional manifolds, e.g., the
normal line tnS(y) is replaced by a normal plane for 1D curves embedded in 3D.

The natural boundary conditions of CPM have first-order accuracy and are homo-
geneous Neumann BCs, ∇SuS · n∂S = 0, where n∂S is the unit conormal of ∂S. The
conormal is a vector normal to ∂S, tangential to S, and oriented outward [44]. Therefore,
n∂S(y) ̸= nS(y) for y ∈ ∂S, and n∂S(y) is orthogonal to nS(y) since n∂S(y) is in the
tangent space of S. The CP extension propagates manifold data constant in both nS and
n∂S at ∂S. Hence, finite differencing across the boundary subset Ω(∂S) will measure zero
conormal derivatives [138] and the discretization of the manifold differential operator can
be used without any changes at xi ∈ Ω(∂S).

However, to enforce first-order Dirichlet BCs on ∂S, the CP extension step must be
changed. The prescribed Dirichlet value at the closest point of xi ∈ Ω(∂S) is extended
to xi (instead of the interpolated value in (3.1)). That is, the CP extension assigns ui =
uS(cp∂S(xi)) for all xi ∈ Ω(∂S), where uS(cp∂S(xi)) is the Dirichlet value at cp∂S(xi).
Only this extension procedure changes; the FD discretization is unchanged for all exterior
BC types and orders.

For improved accuracy, second-order Dirichlet and zero-Neumann exterior BCs were in-
troduced by Macdonald et al. [89] using a simple modification to the closest point function.
The closest point function is replaced with

cpS(x) = cpS(2cpS(x)− x). (4.3)

50

Effectively, rather than finding the closest point, this expression determines a “reflected”
point, and returns its closest point instead.

Observe that cpS satisfies cpS(xj) = cpS(xj) if xj ̸∈ Ω(∂S) (and cpS(x) is unique).

S

cpS(xk)

cpS(xk)
2cpS(xk)− xk

xk

cpS(xj) = cpS(xj)

2cpS(xj)− xj
xj

Therefore, no change occurs to CPM on the interior of S
(see inset, bottom), so we continue to use cpS(x) for x ∈
Ω(S)\Ω(∂S). However, for boundary points xk ∈ Ω(∂S),
we have cpS(xk) ̸= cpS(xk), since cpS(xk) is a point on
the interior of S while cpS(xk) is a point on ∂S (see
inset, top). Hence, for a flat manifold, uS(cpS(xk)) gives
the interior mirror value for xk. For a general, curved
manifold uS(cpS(xk)) gives an approximate mirror value.

Thus, replacing cpS with cpS will naturally apply
second-order homogeneous Neumann exterior BCs: ap-
proximate mirror values are extended to xk ∈ Ω(∂S), so
the effective conormal derivative becomes zero at ∂S. This approach generalizes popular
methods for codimension-zero problems with embedded boundaries, where mirror values
are also assigned to ghost points (see e.g., [79, Section 2.12]). In practice, the only change
required is to replace Ik and corresponding weights in (3.1) with those for cpS(xk).

Second-order Dirichlet exterior BCs similarly generalize their codimension-zero coun-
terparts, e.g., the ghost fluid method [50] that fills ghost point values by linear extrapo-
lation. The CP extension at xk ∈ Ω(∂S) becomes u(xk) = 2uS(cp∂S(xk)) − u(cpS(x)),
where uS(cp∂S(xk)) is the prescribed Dirichlet value on ∂S. Hence, for xk ∈ Ω(∂S) we
change (3.1) to

uk = 2uS(cp∂S(xk))−
∑
j∈Ik

wkjuj, (4.4)

where Ik and wkj are the interpolation stencil indices and weights for cpS(xk), respectively.

Remark that S can have multiple boundaries, so there may be multiple Ω(∂S) regions
where this BC treatment must be applied.

4.2 Interior Boundary Conditions

As discussed in Chapter 3, the discrete setting of CPM involves two main operations:
interpolation for CP extensions and finite differences (FDs) for differential operators. Ex-
terior BCs are handled by modifying the CP extension interpolation while keeping the

51

S

C

S⊥

Figure 4.2: On the left, a normal manifold S⊥ (green) extends perpendicularly outwards
from a curve C (white) where an IBC is to be applied. On the right, closest points cpS(xi)
for xi ∈ Ω(C) (yellow and purple) cannot be globally partitioned into two disjoint sets by
C on a nonorientable S (blue).

finite differencing the same. Below we describe our proposed technique to extend CPM
with support for interior BCs, which consists of two key changes: adding new degrees of
freedom (DOFs) and carefully altering both the interpolation and FD stencils.

For the rest of this chapter we focus on the cases where the manifold S is a curve
embedded in R2 or a surface embedded in R3. Let C ⊂ S denote the interior region where
the BC is to be applied, which can be a point (in 2D or 3D) or an open or closed curve
(in 3D). Since CPM is an embedding method we must consider the influence of C on the
embedding space N (S). Let S⊥ denote a (conceptual) manifold orthogonal to S along C,
i.e., analogous to S⊥ defined in (4.2) for the exterior boundary case, but with ∂S replaced
by C. See Figure 4.2 (left) for an example curve C on a surface S and its normal manifold
S⊥ at C.

4.2.1 Adding Interior Boundary DOFs

Exterior BCs incorporate the BC using grid points xi ∈ Ω(∂S) as defined in (4.1). These
grid points xi ∈ Ω(∂S) are only needed to enforce the exterior BC since they lie on the
opposite side of S⊥ from S. Therefore, CP extension stencils for xi ∈ Ω(∂S) can be safely
modified to enforce exterior BCs.

For interior BCs, the situation is more challenging. Similar to Ω(∂S), a new interior

52

boundary subset Ω(C) ⊂ Ω(S) is defined as

Ω(C) = {xi ∈ Ω(S) | ∥xi − cpC(xi)∥ ≤ rΩ(S)}, (4.5)

where cpC is the closest point function of C. Comparing with (4.1), the subsets Ω(∂S) and
Ω(C) are defined in the same way, except Ω(∂S) has the extra property cpS(xi) = cp∂S(xi)
for all xi ∈ Ω(∂S); i.e., points in the exterior boundary subset have a closest manifold
point that is also their closest boundary point. Grid points in the interior boundary subset
do not: xi ∈ Ω(C) will in general have cpS(xi) ̸= cpC(xi) unless the point xi ∈ S⊥.

Ideally, we would use the grid points xi ∈ Ω(C) to enforce the IBC, analogous to the
exterior case. However, the tubular volume surrounding C, {x ∈ N (S) | ∥x − cpC(x)∥ ≤
rΩ(S)}, which contains Ω(C), also intersects with S. Therefore, we cannot simply repurpose
and modify CP extension stencils for xi ∈ Ω(C), since they are needed to solve the manifold
PDE on S \ C.

We propose to add a second set of spatially colocated DOFs, called the BC DOFs, at
all xi ∈ Ω(C). The BC DOFs allow us to apply similar techniques for interior BCs as was
done for exterior BCs. Specifically, given a computational domain Ω(S) of NS grid points
and the subset Ω(C) of NC grid points, the discrete linear system to be solved will now
involve NS + NC DOFs. We order the BC DOFs after the original PDE DOFs. That is,
indices in the set JS = {j ∈ N | 0 ≤ j < NS} give xj ∈ Ω(S) while indices in the set
JC = {α ∈ N | NS ≤ α < NS + NC} give xα ∈ Ω(C). Throughout we use Greek letters to
denote indices in JC to clearly distinguish from indices in JS . Note that for every BC DOF
α ∈ JC there is a corresponding PDE DOF j ∈ JS such that xα = xj. The key question
then becomes: when do we use PDE DOFs versus BC DOFs?

Intuitively, the answer is simple: interpolation and FD stencils (I i and Di from (3.1)
and (3.2)) must only use manifold data uS from the same side of S⊥ that the stencil belongs
to. Therefore, if a stencil involves manifold data on the opposite side of S⊥, the IBC must
be applied using the BC DOFs.

Figure 4.3 gives a conceptual illustration of the process for a point C on a circle S
embedded in R2. Both BC DOFs and PDE DOFs are present in the region of Ω(C). The
BC DOFs are partitioned into one of two sets depending on which side of S⊥ the closest
point cpS(xi) is on. The original grid Ω(S) and duplicated portion Ω(C) are cut, and each
half of Ω(C) is joined to the opposing side of Ω(S).

The same treatment of BCs as in the exterior case is then applied on this nonmanifold
grid Ω(S) ∪ Ω(C). That is, the required modifications to the CP extension interpolation
stencils in Section 4.1 are applied. Unlike the exterior BC case, however, changes to FD

53

Ω(C)
Ω(S)

C

S

S⊥

Ω(S) ∪ Ω(C)

Figure 4.3: A conceptual illustration of our approach to interior boundaries for a point
C (white) on a curve S (blue) in R2. Top row: Duplicated BC DOFs are generated in
the boundary subset Ω(C) around C (thick black grid). Middle row: The normal manifold
S⊥ (green) locally partitions the grid into two sides (yellow, purple). Bottom row: The
modified grid connectivity is illustrated by warping it into R3.

54

stencils do occur for IBCs since Ω(C) and Ω(S) are cut and joined to opposite sides of each
other.

If S is orientable then this intuitive picture in Figure 4.3 is an accurate depiction of
the necessary grid connectivity. That is, near C we must duplicate DOFs and cut and join
opposite pieces of Ω(S) and Ω(C) to produce regions (similar to Ω(∂S)) where BCs can be
imposed. However, if S is nonorientable the closest points cpS(xi) for xi ∈ Ω(C) cannot be
globally partitioned into two sides. For example, on the Möbius strip in Figure 4.2 (right),
an apparent flip in the partitioning of cpS(xi) is unavoidable as one moves along a curve
C that loops around the whole strip.

Fortunately, IBCs can still be enforced on nonorientable manifolds because the manifold
can be oriented locally. The interpolation and FD stencils only perform operations in a
small local region of Ω(S), so locally orienting the manifold is sufficient to enforce IBCs.

4.2.2 S⊥ Crossing Test

We must keep computation local to each stencil to handle nonorientable manifolds. There-
fore, first consider testing if any two closest points of x1,x2 ∈ N (S) are on opposite sides
of S⊥. A naive approach would be to construct S⊥ explicitly, e.g., with a surface triangu-
lation (as was done by Shi et al. [159]), and then test if the line segment between cpS(x1)
and cpS(x2) intersects the triangulation. However, building an explicit surface is counter
to the implicit spirit of CPM.

Determining if cpS(x1) and cpS(x2) are on opposite sides of S⊥ can instead be accom-
plished based on closest points on C. Let cpC(x1) and cpC(x2) be the closest points to x1

and x2 on C, respectively. Define the vector cpS−C(x) as

cpS−C(x) ≡ cpS(x)− cpC(x). (4.6)

Denote the locally-oriented unit normal to S⊥ at y ∈ C as nS⊥(y). The function

F (x) ≡ cpS−C(x) · nS⊥(cpC(x)) (4.7)

will have different signs for F (x1) and F (x2) if cpS(x1) and cpS(x2) are on different sides
of S⊥, or equivalently F (x1)F (x2) < 0. However, this direct test would require computing
nS⊥ along C and locally orienting that normal vector.

Instead of checking the directions cpS−C relative to the locally oriented normals nS⊥ , we
can check the directions of cpS−C(x1) and cpS−C(x2) relative to each other. As illustrated

55

S

x1
x2

cpS(x1)

cpS(x2)

cpC(x1)
cpC(x2)

C S⊥

Figure 4.4: For two points x1,x2 ∈ N (S), we can determine if the closest points, cpS(x1),
cpS(x2), lie on opposite sides of C based on their orientations relative to the corresponding
closest points on C, cpC(x1), cpC(x2).

in Figure 4.4, if cpS(x1) and cpS(x2) are on opposite sides of S⊥ the associated cpS−C(x)
vectors will point in opposing directions; thus, we can simply check if their dot product is
negative:

cpS−C(x1) · cpS−C(x2) < 0. (4.8)

In practice, we find (4.8) sufficient to obtain second-order accuracy in the convergence
studies of Section 4.3 on smooth S and C.

When x is close to S⊥ the vector cpS−C(x) ≈ 0, which can result in an inaccurate
classification of which side cpS(x) is on. Therefore, if ∥cpS−C(x)∥ = O(h2) the point
cpS(x) is considered to lie on C and can be safely assigned to either side, while maintaining
second-order accuracy. In practice, we consider cpS(x) to lie on C if ∥cpS−C(x)∥ < 0.1h2.

As we have noted, the locality of this S⊥ crossing test allows it to handle nonorientable
manifolds with CPM and IBCs. However, on orientable manifolds one can still globally
orient stencils in Ω(C) to impose different values or types of IBCs on either side of C.
For example, different prescribed Dirichlet values on each side of C are useful for vector
field design. Mixing Dirichlet and Neumann IBCs on C in this way can also be useful for
diffusion curves.

4.2.3 Stencil Modifications

In this section, we describe how to use the S⊥ crossing test to impose IBCs by altering
interpolation and FD stencils. The S⊥ crossing test (4.8) allows us to determine if any

56

two points x1,x2 ∈ N (S) have closest points cpS(x1), cpS(x2) on opposite sides of S⊥.
Ultimately, we employ this test to determine if the closest points cpS(xj) for j ∈ I i or Di
are on the opposite side of S⊥ relative to a stencil for xi, so the stencil can use the correct
PDE vs. BC data.

A stencil is itself assigned to a particular side of S⊥ based on the location of an asso-
ciated point on S that we call the stencil director, denoted y⋆. For the FD stencil of xi
the stencil director is y⋆i = cpS(xi), since grid data at xi corresponds to manifold data
at cpS(xi). For the interpolation stencil of cpS(xi), the stencil director is the interpola-
tion query point itself, i.e., y⋆i = cpS(xi), which is the same as the FD stencil’s director.
Each stencil director also has a corresponding stencil direction denoted d⋆. For FD and CP
extension interpolation stencils d⋆i = cpS−C(xi) = y⋆i − cpC(xi).

It is, however, not always the case that y⋆i = cpS(xi). Interpolation of the solution stored
on the grid Ω(S)∪Ω(C) can also be used to obtain the final solution at any set of manifold
points. For example, if one desires to transfer the solution to a mesh or a point cloud (e.g.,
for display or downstream processing), interpolation can be used to obtain the solution on
vertices of the mesh or points in the cloud. In this case, the stencil director is again the
interpolation query point y⋆ = yquery ∈ S and the stencil direction is d⋆ = y⋆ − cpC(y

⋆).

PDE DOF Modifications

The first step to incorporate IBCs is to alter the stencils for the PDE DOFs in JS . The
computation in both (3.1) and (3.2) for i ∈ JS has the form

ui =
∑
j∈Gi

cijuj,

where Gi ⊂ JS are indices corresponding to grid points in the stencil for i (i.e., Gi = I i or
Gi = Di) and cij are corresponding weights.

To incorporate IBCs, the index j ∈ Gi is replaced with its corresponding BC DOF index
α ∈ JC if data at xj comes from the opposite side of S⊥. The corresponding stencil weight
cij remains unchanged. Using the S⊥ crossing test (4.8), for all j ∈ Gi, we replace j ∈ JS
with its corresponding α ∈ JC if

d⋆i · cpS−C(xj) < 0. (4.9)

If our equations are written in matrix form, these modifications to the PDE DOFs
above would change NS × NS matrices to be size NS × (NS + NC). The next step is to
add the BC equations for the BC DOFs in JC, resulting in square matrices again of size
(NS +NC)× (NS +NC).

57

BC DOF Modifications

Finite-difference stencils are added for the BC DOFs with α ∈ JC and modified in a
similar way to the PDE DOFs above. The same grid connectivity is present in Ω(C) as
the corresponding portion of Ω(S) (except at the boundary of Ω(C)). Therefore, the same
FD stencils on Ω(S) are used on Ω(C) except with indices β ∈ JC (and indices not present
in Ω(C), i.e., grid points in Ω(S) around the edge of Ω(C), are removed). Hence, using the
S⊥ crossing test (4.8) for all β ∈ Dα, the index β ∈ JC is replaced with its corresponding
j ∈ JS if

d⋆α · cpS−C(xβ) < 0. (4.10)

The CP extension BC equations discussed in Section 4.1 for exterior BCs are used
on the BC DOFs with α ∈ JC. However, first-order zero-Neumann IBCs are no longer
automatically imposed as in Section 4.1. Instead, for first-order zero-Neumann IBCs, the
CP extension extends manifold data uS at cpC(xα) for xα ∈ Ω(C), i.e.,

uS(cpC(xα)) = u(xα) ≈
∑
β∈Iα

wαβuβ.

Once again the S⊥ crossing test (4.8) is used to ensure DOFs are used from the correct sides
of S⊥. In this case, the stencil director (interpolation query point) is y⋆α = cpC(xα), which
gives d⋆α = 0 since y⋆α is on both C and S. However, the vector d⋆α ≡ cpS(xα) − cpC(xα)
gives the correct direction to define which side of S⊥ the interpolation stencil belongs to.
Then, for all β ∈ Iα, we replace β ∈ JC with its corresponding j ∈ JS if (4.10) holds.

For second-order zero-Neumann IBCs, the only modification required is to replace
cpC(x) with

cpC(x) = cpS(2cpC(x)− x). (4.11)

Note that (4.11) is different from the form used for exterior BCs in (4.3), as it involves both
cpS and cpC. However, the purpose of this modified closest point function (4.11) remains
the same, i.e., the point cpC(x) is an approximate mirror location.

The CP extension equations for BC DOFs, with α ∈ JC, to enforce Dirichlet IBCs are
analogous to Section 4.1. The prescribed Dirichlet value, uS on C, is extended for first-
order Dirichlet IBCs, i.e., u(x) = uS(cpC(x)) or in the discrete setting uα = uS(cpC(xα)).
For second-order Dirichlet IBCs, the extension is u(x) = 2uS(cpC(x)) − u(cpC(x)), which
becomes analogous to (4.4) in the discrete setting.

58

4.2.4 Open Curves C in R3

Past the endpoints of an open curve C the PDE should be solved without the IBC being
enforced. However, the set Ω(C) includes half-spherical regions of grid points past the
boundary point ∂C. These half-spherical regions are analogous to the exterior boundary
subsets Ω(∂S) in Section 4.1 and are defined as

Ω(∂C) = {xα ∈ Ω(C) | cpC(xα) = cp∂C(xα)}. (4.12)

We do not perform the modifications of Section 4.2.3 for points xα ∈ Ω(∂C) since this
would enforce the IBC where only the PDE should be solved. In other words, the BC
DOFs in Ω(∂C) are not added to the linear system.

4.2.5 Points C in R3

Remarkably, and unlike for open curves, when C is a point on S embedded in R3 no
change to the stencil modification procedure in Section 4.2.3 is needed. To understand
why, consider two simpler options. First, without any boundary treatment whatsoever
near C the PDE is solved but the IBC is ignored. Second, a naive first-order treatment
simply sets either the nearest grid point or a ball of grid points around C to the Dirichlet
value; however, at those grid points the PDE is now ignored. Instead, the grid points near
C should be influenced by the IBC at C, while also satisfying the PDE.

Under the procedure of Section 4.2.3, the cpS−C(xj) and d⋆i vectors will point radially
outward from the point C (approximately in the tangent space of S at C). The S⊥ crossing
test (4.8) becomes a half-space test, where the plane P partitioning the space goes through
C with its normal given by the stencil direction vector, d⋆i . In the stencil for y⋆i , points
on the same side of P as y⋆i are treated as PDE DOFs, while points on the opposite side
receive the IBC treatment (either first or second-order as desired). However, the direction
of d⋆i , and hence the half-space, changes for each grid point’s stencil (radially around C).
The d⋆i changes because the location of y⋆i changes for each i with cpC(xi) fixed at C. This
spinning of P radially around C allows the PDE and the IBC to be enforced simultaneously
since both PDE and IBC equations are added to the linear system for all points xi ∈ Ω(C).

Therefore, for a point C ∈ S ⊂ R3, our first-order Dirichlet IBC method acts as an
improvement of the approach of Auer et al. [7], where only points xj ∈ Ω(C) on one
side of P (which revolves around C) are fixed with the prescribed Dirichlet value. We
observe that this reduces the error constant compared to Auer et al. [7] in convergence
studies in Section 4.3. Furthermore, our approach in Section 4.2.3 allows us to achieve

59

second-order accuracy, whereas the method of Auer et al. [7] is restricted to first-order
accuracy. Neumann IBCs at a point C are not well-defined since there is no preferred
direction conormal to C.

4.2.6 Localizing Computation Near C

Computation to enforce IBCs should only be performed locally around C for efficiency. The
new BC DOFs satisfy this requirement since they are only added at grid points xi within
a distance rΩ(S) of C. This banding of Ω(C) is possible for the same reason it is possible to
band Ω(S) (see Section 3.2): grid points are only needed near S and C because accurate
approximations of differential operators are only needed at grid points within interpolation
stencils.

The use of the S⊥ crossing test (4.8) has been discussed in terms of checking all in-
terpolation and FD stencils in Ω(S) and Ω(C) above. For efficiency, we would rather only
check if cpS(x1) and cpS(x2) are on different sides of S⊥ if x1 and x2 are near C. However,
depending on the geometry of S and C, points xi /∈ Ω(C) can have stencils for interpolating
at cpS(xi) that cross S⊥, so testing only points xi ∈ Ω(C) does not suffice.

We therefore check stencils that include grid points xi ∈ Ω(S) with ∥xi − cpC(xi)∥ <
2rΩ(S) for all the examples in this chapter. The closest points cpC(xi) are needed to compute
∥xi−cpC(xi)∥. Computation of cpC for all xi ∈ Ω(S) is avoided using a similar breadth-first
search to the one used in the construction of Ω(S) (see Algorithm 1).

4.2.7 Improving Robustness of S⊥ Crossing Test

In practice, manifolds with small bumps of high curvature relative to the grid resolution
can cause the S⊥ crossing test (4.8) to be inaccurate. For example, the headdress of the
Nefertiti mesh in Figure 4.9 has many small bumps, which causes the cpS−C and d⋆ vectors
to be far from orthogonal to S⊥ and C. The closest points near C are then misclassified as
being on the wrong side of S⊥.

To make (4.8) more robust, we modify the cpS−C and d⋆ vectors to be orthogonal to
S⊥ and C before computing the dot product. We illustrate this for a surface (2D manifold)
embedded in R3 throughout this section. For this case, (4.8) is used with cpS−C(x) replaced
by

cp⊥
S−C(x) =

(
I− nSnS

T − tCt
T
C
)
cpS−C(x), (4.13)

60

(and similarly for d⋆) where I is the identity matrix and tC is the unit tangent vector along
C. The manifold normal nS and tangent tC are evaluated at cpC(x). Projecting out the nS
and tC components is equivalent to projecting cpS−C(x) onto nS⊥(cpC(x)). Therefore, the
S⊥ crossing test (4.8) becomes equivalent to the direct test that checks if F (x1)F (x2) < 0
(see Section 4.2.2), but without needing to orient nS⊥ . The vectors nS and tC must be
evaluated at cpC(x) since the vector cpS−C(x) starts at cpC(x) (and goes to cpS(x)). When
C is a single point the tangent direction is undefined, so only the nS component is projected
out in this case. Let us now consider how to compute nS and tC.

For a codimension-one manifold S the Jacobian of the closest point function, JcpS , is
the projection operator onto the tangent space of S for points on the manifold [96, 72, 109].
Therefore, for a surface in R3, the eigenvectors of JcpS are the manifold normal nS and two
tangent vectors. However, two arbitrary tangent vectors of S will not suffice; we need the
tangent tC along C. The curve C ∈ R3 has codimension two. The corresponding Jacobian
for C, JcpC , is likewise equivalent to a projection operator onto the tangent space of C [75].
However, the eigenvectors of JcpC only provide a unique tangent vector tC, since the normal
and binormal to C can freely rotate around tC. Hence, we compute the manifold normal nS
from the eigendecomposition of JcpS , while tC is computed from the eigendecomposition of
JcpC .

Second-order centred FDs in Ω(S) are used to compute JcpS . The Jacobian JcpS is
only equivalent to the tangent space projection operator at points on S. Therefore, a CP
extension must be performed to obtain the projection operator at all points xi ∈ Ω(S),
i.e., JcpS (xi) = JcpS (cpS(xi)). In the discrete setting, the CP extension is computed with
the same interpolation discussed in Chapter 3. The Jacobian of cpC is computed similarly
over Ω(C).

From the above computation of JcpS and JcpC , the projection operators are known
at points cpS(xi) and cpC(xi), respectively. However, since the nS vectors are computed
from JcpS , they are not yet available at cpC(xi) where we need them. The nS vectors
are therefore computed at cpC(xi) via barycentric-Lagrange interpolation (with the same
degree p polynomials as the CP extension). Interpolating nS vectors requires some care
since they are unoriented manifold normals. We adapt a technique proposed by Auer et al.
[7]: when interpolating nS , given at points xi ∈ Ω(S), we locally orient the vectors within
each interpolation stencil by negating vectors satisfying

nS(xi) · nS(x̃) < 0,

where x̃ is a single, fixed grid point in the interpolation stencil.

61

4.2.8 A Nearest Point Approach for Dirichlet IBCs

It is also interesting to consider a nearest point approach for handling Dirichlet IBCs at
C, similar to techniques discussed at the start of this chapter for other manifold represen-
tations. That is, simply fix the grid points xi ∈ Ω(S) nearest to C with the prescribed
Dirichlet value, and remove them as DOFs. If C is a point, a single grid point is assigned
the Dirichlet value and removed as a DOF. If C is a curve, a set of nearest grid points is
obtained (i.e., a raster representation of C) and removed as DOFs by assigning Dirichlet
values. To our knowledge, this approach has not been used with CPM previously.

This nearest point approach is attractive since new BC DOFs are unnecessary, i.e.,
Ω(C) is not needed. However, it can only be used for Dirichlet IBCs with the same value
on both sides of C. That is, two-sided Dirichlet IBCs cannot be imposed with the nearest
point approach, nor can Neumann IBCs. The nearest point approach is also only first-order
accurate since the nearest point can be h

√
d/2 away from C. We observe that the nearest

point approach has a better error constant than the method of Auer et al. [7], but a similar
or worse error constant than our first-order IBC approach above (see Figure 4.7(c)).

4.3 Convergence Studies

We begin our evaluation by verifying that our proposed IBC schemes achieve the expected
convergence orders on various analytical problems. We also compare our approach with
the existing CPM approach of Auer et al. [7], the nearest point approach, as well as a
standard mesh-based method for reference. All error values are computed using the max-
norm. Throughout the rest of this chapter, the subscript S has been removed from the
manifold functions (e.g., uS), since it is apparent from the context.

4.3.1 Poisson Equation with Discontinuous Solution

Consider the Poisson equation

−∂
2u

∂θ2
= 2 cos(θ − θC),

u(θ−C) = 2,

u(θ+C) = 22,

62

on the unit circle parameterized by θ. The right-hand-side expression is found by differen-
tiating the exact solution

u(θ) = 2 cos(θ − θC) +
10

π
(θ − θC),

where θC is the location of the Dirichlet IBC. The Dirichlet IBC is two-sided and thus
discontinuous at the point θC, with u = 2 as θ → θ−C and u = 22 as θ → θ+C . We use
θC = 1.022π; no grid points coincide with the IBC location.

Eigen’s SparseLU is used to solve the linear system for this problem on the circle
embedded in R2. Figure 4.5(a) shows that the first and second-order IBCs discussed in
Section 4.2 achieve the expected convergence rates. Neither the nearest point approach
(Section 4.2.8) nor the method of Auer et al. [7] can handle discontinuous IBCs.

4.3.2 Heat Equation

CPM can also be applied to time-dependent problems. Consider the heat equation

∂u

∂t
= ∆Su, with

{
u = g, or

∇Su · bC = 0,
on C, (4.14)

where bC is the binormal direction to C that is also in the tangent plane of S, i.e., bC =
nS×tC (see Section 4.2.7). The binormal is analogous to the conormal n∂S used for exterior
BCs. If imposing the Dirichlet IBC, the exact solution, g, is used as the prescribed function
on C. Here we solve the heat equation on the unit sphere with the exact solution

g(θ, ϕ, t) = e−2t cos(ϕ),

where θ is the azimuthal angle and ϕ is the polar angle. The IBC is imposed with C as
a circle defined by the intersection of a plane with S. The initial condition is taken as
g(θ, ϕ, 0) = cos(ϕ).

Crank-Nicolson time-stepping [79] (a.k.a., trapezoidal rule) is used with ∆t = 0.1h until
time t = 0.1. Figure 4.5 (b) and (c) show convergence studies for (4.14) with Dirichlet and
zero-Neumann IBCs imposed, respectively. The expected order of accuracy for first and
second-order IBCs is achieved for both the Dirichlet and zero-Neumann cases. Recall that
the nearest point approach and the method of Auer et al. [7] cannot handle Neumann
IBCs.

63

4.3.3 Screened-Poisson Equation

Exact solutions for manifold PDEs can also be derived on more complex manifolds defined
as level sets. Consider the screened-Poisson problem in Section 4.6.5 of [24], which was
inspired by an example by Dziuk [43]. The surface is defined as S = {x ∈ R3 | (x1−x23)2+
x22 + x23 = 1}, which we refer to as the Dziuk surface.

The screened-Poisson equation we solve is

−∆Su+ u = f,

∇Su · bC = 0,
(4.15)

with exact solution u(x) = x1x2. Although the solution is simple, the function f is com-
plicated; we derived it by symbolic differentiation using the formulas in [24, 43].

The zero-Neumann IBC of (4.15) is satisfied on the intersection of S with the x1x2-
plane. From the definition of S, this intersection is the unit circle in the x1x2-plane.
Figure 4.5 (d) and (e) show convergence studies imposing the zero-Neumann IBC on the
full circle (closed curve) and the arc with θ ∈ [−3π

4
, π
4
] (open curve), respectively. The

expected order of accuracy is observed for the implementations of first and second-order
IBCs.

4.3.4 Different CPM approaches vs. a Mesh-Based Method

CPM is principally designed to solve problems on general manifolds, given by their closest
point functions. The closest point function can be thought of as a black box allowing many
manifold representations to be handled in a unified framework. Hence, we emphasize
that one should not expect CPM to universally surpass specially tailored, well-studied
approaches for particular manifold representations, such as finite elements on (quality)
triangle meshes. Nevertheless, mesh-based schemes provide a useful point of reference
for our evaluation. CPM also retains some advantages even for triangle meshes, such as
mesh-independent behaviour.

With the above caveat in mind, we compare the various CPM approaches to the stan-
dard cotangent Laplacian [131, 43] that approximates the Laplace-Beltrami operator on a
triangulation of the surface. We use the implementation from geometry-central [154],
adapted slightly to include IBCs. The Poisson equation −∆Su = f is solved on the Dziuk
surface defined in Section 4.3.3. The same exact solution u(x) = x1x2 is used, but Dirichlet
IBCs are imposed using this exact solution.

64

h

E
rr
or

(a)

h

E
rr
or

(b)

h

E
rr
or

(c)

h

E
rr
or

(d)

h

E
rr
or

(e)

1st Order

2nd Order

Slope = 1

Slope = 2

Figure 4.5: Convergence studies and associated geometries for the model problems in
Sections 4.3.1-4.3.3. The plots show results for our CPM approach using first (blue)
and second (orange) order IBCs, along with lines of slopes 1 (grey, dashed) and 2 (grey,
dotted). In (a)-(c) analytical cpS are used, while (d) and (e) compute cpS from the level-set
representation of S. All examples use analytical cpC.

65

Tg

(a) (b)

Tb

(c) (d)

Figure 4.6: Triangulations of the Dziuk surface used for testing. Left: Good-quality tri-
angulation, Tg, at its base resolution (a) and after four rounds of refinement (b). Right:
Low-quality triangulation, Tb, also at its base (c) and four times refined (d) resolutions.

“Good” and “bad” triangulations of the Dziuk surface, denoted Tg and Tb respectively,
are used to illustrate the dependence of the mesh-based method on triangulation quality
(Figure 4.6). Both triangulations are constructed starting from six vertices on S as in [43].
An initial round of 1:4 subdivision is performed by adding new vertices along each edge,
at the midpoint for Tg and at the 20% position for Tb, to induce skinnier triangles in the
latter. The new vertices are projected to their closest points on S.

Evaluations under refinement for the mesh-based method are performed starting with
the above first-level Tg and Tb. We refine with uniform 1:4 subdivision, for both Tg and
Tb, by adding new vertices at midpoints of edges and then projecting them onto S (see
Figure 4.6). Delaunay edge flips are also performed to improve the quality of Tg at each
refinement level.

Triangle mesh resolution is measured as the mean edge-length in Tg or Tb, whereas
for CPM resolution is measured as the uniform h used in the computational tube Ω(S).
This core incompatibility makes it inappropriate to use resolution as the independent
variable for comparative evaluations of error, computation time, or memory usage. A
more equitable comparison is to investigate computation time versus error and memory
versus error. Computation times for CPM include the construction of Ω(S) and Ω(C)
(which involves computing cpS and cpC) and the time for constructing and solving the
linear system. Computation times for the mesh-based method include the triangulation
refinement and the construction and solution of the linear system. Separate evaluations
are performed with C as a closed curve, an open curve, and a point, since CPM IBC

66

enforcement is slightly different for each type of C. The cpS are computed from a level-
set representation, while cpC are computed from polyline representations for curves C and
exactly for the point C.

Closed Curve IBC

The boundary curve C is constructed using the flip geodesics algorithm in geometry-central
[154]. The resulting C is represented as a polyline P , which in general does not conform
to edges or vertices of T . For IBC enforcement, the nearest vertex in the triangulation T
to each vertex in P is assigned the prescribed Dirichlet value.

This treatment of Dirichlet IBCs for the mesh-based method is first-order accurate in
general. More accurate (and involved) Dirichlet IBC approaches could be used as discussed
at the beginning of this chapter. However, we set these options aside, as the goal of this
comparison is simply to show that CPM with our first and second-order IBC approaches
gives comparable results to basic mesh-based methods, that is, mesh-based methods where
the representations of S and C are held fixed, e.g., no (extrinsic or intrinsic) remeshing is
performed.

Figure 4.7 (top row) compares all types of CPM IBC approaches against the mesh-
based method on Tg and Tb in columns (a) and (b), which show computation time vs.
error and memory vs. error, respectively. CPM with second-order IBCs achieves the lowest
error for the same computation time and memory usage as other approaches. The mesh-
based method with Tg outperforms the use of Tb, as expected. CPM with first-order IBCs
and nearest point approaches are similar and lie between the mesh-based method with Tg
and Tb. The method of Auer et al. [7] has the largest error compared to all others. The
expected order of convergence is seen for all CPM IBC approaches in the error versus h
plot of Figure 4.7 (top row, (c)).

Open Curve IBC

The open curve C is also constructed using the flip geodesics algorithm in geometry-central
[154]. The Dirichlet IBC is enforced in the mesh-based solver in the same way as the closed
curve above. Figure 4.7 (middle row) shows the same ranking of the methods as in the
closed curve case, except CPM with first-order IBCs now outperforms both triangulations
and the nearest point CPM approach. The expected order of convergence is seen for all
CPM IBC approaches in Figure 4.7 (middle row, (c)).

67

Mesh Solver - Tg
Mesh Solver - Tb

CPM 1st Order

CPM 2nd Order

CPM Nearest Point

Auer et al. [7]

C
om

p
u
ta
ti
on

T
im

e

Error

M
em

or
y

Error

E
rr
or

h

Slope = 2

Slope = 1

C
om

p
u
ta
ti
on

T
im

e

Error

M
em

or
y

Error

E
rr
or

h

Slope = 2

Slope = 1

C
om

p
u
ta
ti
on

T
im

e

Error

(a)

M
em

or
y

Error

(b)

E
rr
or

h

Slope = 2

Slope = 1

(c)

Figure 4.7: A comparison of CPM vs. the mesh-based cotangent Laplacian for the Poisson
equation with Dirichlet IBC. Top row: Closed curve C. Middle row: Open curve C. Bottom
row: Point C.

68

Point IBC

The point C is intentionally chosen as one of the vertices in the base triangulation so that
it is present in all refinements of Tg and Tb. The Dirichlet IBC at C is imposed by replacing
the vertex DOF in T with the prescribed Dirichlet value. Figure 4.7 (bottom row) shows
the results for a point C.

The mesh-based solver on Tg converges with second-order accuracy (since the IBC is
a vertex), but only first-order accuracy on Tb. Therefore, the mesh-based method with Tg
outperforms CPM with second-order IBCs in the larger error regime. In the lower error
regime, the latter methods are similar. All other methods show the same ranking as the
open curve case.

The expected order of convergence is seen for all CPM IBC approaches in Figure 4.7
(bottom row, (c)). Notably, the second-order IBC version of CPM exhibits slightly higher
than expected errors at the finest grid resolution for the closed and open curve IBCs (see
Figure 4.7, top and middle rows, (c)). This is caused by the resolution of the polyline
representation of C: at fine grid resolutions, the inherent sharp features of the coarse
polyline C begin to be resolved more fully by the discrete CP function. Accordingly, no
such reduction in convergence order is seen for the point IBC.

4.4 Applications

We now show the ability of our CPM approach to solve PDEs with IBCs that are common
in applications from geometry processing: diffusion curves, geodesic distance, vector field
design, harmonic maps, and reaction-diffusion textures.

Quadratic polynomial interpolation, i.e., p = 2, is used for all the examples in this
section. Current CPM theory suggests that only first-order accuracy can be expected
with quadratic polynomial interpolation, but CPM has been observed to give second-order
convergence numerically (see [88, Section 4.1.1]). This behaviour is confirmed with IBCs
in Figure 4.8.

The main motivation for choosing quadratic interpolation is to obtain smaller compu-
tational tube-radii, rΩ(S), which allows higher curvature S and C to be handled with larger
h. The resulting Ω(S) and Ω(C) contain fewer DOFs and therefore the computation is
more efficient. Furthermore, Figure 4.8 shows that, for the same h, quadratic interpolation
has lower computation times. Quadratic interpolation is 1.1-2.1 times faster than cubic in-
terpolation in Figure 4.8. We used p = 3 in the convergence studies of Section 4.3 because

69

1st Order - Cubic 1st Order - Quadratic

2nd Order - Cubic 2nd Order - Quadratic

h

C
om

p
u
ta
ti
on

T
im

e

h

E
rr
or

Slope = 1

Slope = 2

h

C
om

p
u
ta
ti
on

T
im

e

h

E
rr
or

Slope = 1

Slope = 2

Figure 4.8: A comparison of CPM with quadratic vs. cubic interpolation stencils for the
heat (top row) and Poisson (bottom row) problems of Figure 4.5 (b) and (d). Comparable
results are achieved, but quadratic is often faster while cubic typically exhibits more regular
convergence.

70

the error for second-order BCs with p = 2 can sometimes be less regular (i.e., decreasing
unevenly or non-monotonically) than with p = 3 (Figure 4.8, bottom right).

CPM with first-order IBCs is used in all the examples in this section. The geodesic
distance, vector field design, and harmonic map algorithms used here are themselves all
inherently first-order accurate; hence using second-order IBCs would only improve accuracy
near C. Second-order IBCs could have been used for diffusion curves and reaction-diffusion
textures, but the first-order method was used for consistency. Note also that any surface
represented as a mesh is isotropically scaled (with fixed aspect ratio) to fit in [−1, 1]3.

4.4.1 Diffusion Curves

Diffusion curves offer a sparse representation of smoothly varying colours for an image
[122] or surface texture [64]. Obtaining colours over all of S requires solving the Laplace-
Beltrami equation with IBCs:

∆Su
i = 0, with

{
ui = gi, or

∇Su
i · bC = 0,

on C. (4.16)

The Laplace-Beltrami equation (4.16) is solved for each colour channel ui independently
with CPM. The colour vector is composed of all the colour channels, e.g., for RGB colours
u = [u1, u2, u3]T . Dirichlet IBCs, ui = gi on C, are used to specify the colour values
at sparse locations on S. These colours spread over all of S when the Laplace-Beltrami
equation is solved. Zero-Neumann IBCs can be used to treat C as a passive barrier that
colours cannot cross. Two-sided IBCs along C are also easily handled, and can even be of
mixed Dirichlet-Neumann type (not to be confused with Robin BCs).

The surface of the Nefertiti bust [3] is coloured by solving the Laplace-Beltrami equation
with CPM with h = 0.00315 and IBCs specified by diffusion curves in Figure 4.9. IBC
curves are polylines created using the flip geodesics algorithm in geometry-central [154].
Most curves are two-sided Dirichlet IBCs (white curves, Figure 4.9 left) that specify a
colour for each side of the curve. However, the red and green band on the headdress is
created using both two-sided Dirichlet IBCs vertically and two-sided Neumann-Dirichlet
IBCs horizontally (black curves, Figure 4.9 left). The (white) vertical Dirichlet IBCs
specify green on one side of the curve and red on the other. For the (black) horizontal
Neumann-Dirichlet IBCs, the zero-Neumann side allows the different shades of red and
green from the vertical Dirichlet IBCs to diffuse together in each block without specifying
the colour value horizontally, while the Dirichlet side is specified as the navy colour value.

71

Figure 4.9: Colouring a triangulated surface using diffusion curves.

Mixed-Codimensional Objects

The generality of CPM allows PDEs on mixed-codimensional objects to be solved. The
theoretical assumption that cpS is unique is violated in this case (near pieces of differing
codimension). However, CPM gives the expected result in practice on mixed-codimensional
objects (e.g., [88, Figure 4.4]).

Figure 4.10 shows a diffusion curves example (with h = 0.05) featuring a mixed 1D
and 2D object embedded in R3. This mixed-codimensional S is created using analytical
closest point functions for the torus, sphere, and line segment. The torus has minor radius
r = 1 and major radius R = 3, while the sphere is of radius 1.25. The closest point to S is
determined by computing the closest point to each of the torus, sphere, and line segments,
then taking the closest of all four. The two curves C in this example are two-sided Dirichlet
IBCs. C on the torus is a torus knot specified by the parametric equation

x(s) = v(s) cos(as), y(s) = v(s) sin(as), z(s) = sin(bs), (4.17)

with v(s) = R+cos(bs), a = 3, b = 7, and s ∈ [0, 2π]. Closest points for the torus knot are
computed using the optimization problem discussed in Appendix A. C on the sphere is an
analytical closest point function for a circle defined as the intersection of the sphere and a
plane. Notice the colour from the torus to the sphere blends across the line segments as
expected (see Figure 4.10 zoom).

72

Figure 4.10: Diffusion curves on a nonmanifold object of mixed codimension. Line segments
connect the torus to the sphere, which are all represented with analytical cpS . The cpC for
the circle on the sphere is computed analytically, while cpC for the torus knot is computed
from a parametrization.

Codimension-Zero Manifolds

Interestingly, CPM can also be applied with codimension-zero manifolds (see [90, Section
6.2.4]). A codimensional-zero manifold is a solid object that is a subset of Rdim(S). Consider
a codimension-zero S, with a boundary ∂S. The computational domain Ω(S) consists of
all grid points xi ∈ S (having cpS(xi) = xi) plus a layer of grid points outside S where
cpS(xi) ∈ ∂S and ∥xi − cpS(xi)∥ ≤ rΩ(S).

Figure 4.11 shows an example of applying CPM to the diffusion curves problem with
S as the square [−1, 1]2 and Ω(S) ⊂ R2. A parametric curve on the interior of S defines a
diffusion curve C as a two-sided Dirichlet IBC, given by

x(s) = v(s) cos(s) + c, y(s) = v(s) sin(s) + c, (4.18)

where

v(s) =
cos(s)

(
1
2
(a+ b) + sin(as) + sin(bs)

)
+ 1

2
(a+ b)

a+ b
,

with a = 3, b = 4, c = −1
2
, and s ∈ [0, 2π]. Note that the colour varies along C from red to

green inside C and blue to green outside C. (Such colour variations along boundaries C can
also easily be applied to problems where the embedding domain has higher dimension than

73

Figure 4.11: CPM applied to a codimension-zero diffusion curve problem, with the Dirichlet
colour value varying along the white IBC curve. Top row: At an insufficient grid resolution
of h = 0.05 (left), high curvature regions exhibit errors near the curve’s medial axis (right).
Bottom row: A high-resolution grid with h = 0.005 (left) resolves the artifacts (right). The
cpS are computed analytically and cpC are computed from a parametric representation.

74

S.) First-order zero-Neumann exterior BCs are applied on ∂S naturally by CPM, which
enforces no (conormal, i.e., normal to ∂S and in the tangent space of S) colour gradient
at ∂S.

The grid spacing h needs to be fine enough near C to give an accurate solution. Ar-
tifacts can occur if stencils undesirably cross the medial axis of C when h is too large
(cf. Figure 4.11 top and bottom rows). It would be beneficial to explore the use of our
adaptivity framework in Section 3.4 based on the geometry of C for this issue. Adaptivity
would reduce the total number of DOFs in the linear system and thus improve efficiency
while being able to still obtain a satisfactory result.

Applying CPM with codim(S) = 0 represents an alternative to (or generalization of)
various existing embedded boundary methods for irregular domains, e.g., [50, 118, 146].
Advantages and disadvantages of this approach should be explored further in future work.
One advantage shown by Macdonald et al. [90] is the ability to couple volumetric and
surface PDEs in a unified framework.

4.4.2 Geodesic Distance

The heat method for geodesic distance computation [33] has been implemented on many
surface representations, including polygonal surfaces, subdivision surfaces [37], spline sur-
faces [119], tetrahedral meshes [16], and point clouds [33], with each requiring nonnegligible
tailoring and implementation effort. By introducing our Dirichlet IBC treatment for CPM,
we enable a single implementation covering all these cases, since closest points can be com-
puted to these and many other manifold representations.

The heat method approximates the geodesic distance ϕ using the following three steps:

1. Solve ∂u
∂t

= ∆Su to give ut at time t,

2. Evaluate the vector field X = −∇Sut/∥∇Sut∥,

3. Solve ∆Sϕ = ∇S ·X for ϕ.

Step (1) uses a Dirac-delta heat source for a point C or a generalized Dirac distribution
over a curve C as the initial condition. The time discretization of step (1) employs implicit
Euler, for one time-step, which is equivalent (up to a multiplicative constant) to solving

(I− t∆S)vt = 0 on S\C,
vt = 1 on C.

(4.19)

75

The discrete system for (4.19) can be written as Av = f , where A ∈ R(NS+NC)×(NS+NC)

and v, f ∈ RNS+NC .

Imposing first-order IBCs involves the Heaviside step function for f since fi = 0 if i
is in the PDE DOF set (i ∈ JS) and fi = 1 if i is in the BC DOF set (i ∈ JC). In
words, the Heaviside step function jumps from 0 to 1 in the embedding space as you
cross S⊥, i.e., from the PDE DOFs to the BC DOFs. When imposing this IBC in (4.19),
CPM can experience Runge’s phenomenon due to the polynomial interpolation used for
the CP extension. Therefore, we approximate the Heaviside step function with a smooth
approximation as

fi =
1

2
tanh (−k∥cpS−C(xi)∥) +

1

2
, with k =

atanh(1− ϵ)
e

.

The parameters e and ϵ correspond to the “extent” [−e, e] and the maximum error of the
approximation outside of the extent, respectively. That is, when ∥cpS−C(xi)∥ = e, the
error in approximating the Heaviside function is ϵ and the error becomes smaller further
outside of [−e, e]. We choose e = rΩ(S) and ϵ = h for our results.

Step (3) of the heat method also involves a Dirichlet IBC, ϕ = 0 on C, since the geodesic
distance is zero for points on C. No special treatment is required for this IBC. To improve
accuracy, steps (2) and (3) are applied iteratively as discussed by Belyaev and Fayolle [16].
Two extra iterations of steps (2) and (3) are applied in all our examples of the CPM-based
heat method.

We use Eigen’s SparseLU to solve (only) the linear systems arising from step (1) of the
heat method. Using BiCGSTAB (either Eigen’s or our custom solver) results in an incorrect
solution despite the iterative solver successfully converging, even under a relative residual
tolerance of 10−15. We observed that the small time-step of the heat method, ∆t = h2,
causes difficulties for BiCGSTAB. The reason is that values far from the heat sources are
often extremely close to zero. Tiny errors in these values are tolerated by BiCGSTAB, but
lead to disastrously inaccurate gradients in step (2), and thus incorrect distances in step
(3). Another option is to calculate smoothed distances (see [33, Section 3.3]) using larger
time-steps ∆t = mh2 with m ≥ 100; in this scenario BiCGSTAB encounters no problems.
Our custom BiCGSTAB solver is nevertheless successfully used for step (3) of the heat
method.

Figure 4.12 shows the geodesic distance to a single source point on the Dziuk sur-
face, where our CPM-based approach (with h = 0.0125) is compared to exact polyhedral
geodesics [104] and the mesh-based heat method. Implementations of the latter two meth-
ods are drawn from geometry-central [154]. All three approaches yield similar results.

76

Exact Polyhedral CPM Heat Method (Ours) Mesh Heat Method

Figure 4.12: CPM vs. mesh-based methods for geodesic distances to a point on a triangu-
lation of the Dziuk surface. The bottom row shows the rear view of the surface. Consistent
results are observed.

77

Figure 4.13: Geodesic distance to a polyline curve (black) visualized on the “DecoTetrahe-
dron” level-set surface computed using CPM with h = 0.025. The closest points themselves
are directly rendered.

For the example in Figure 4.12, closest points are computed from the same triangulation
used in the exact polyhedral and mesh-based heat method. However, closest points can
also be directly computed from the level-set Dziuk surface (as in Section 4.3.3). To our
knowledge, the heat method has not been applied on level-set surfaces before.

We showcase the ability of our CPM to compute geodesic distance on general manifold
representations. Figure 4.13 visualizes the geodesic distance to an open curve on the
“DecoTetrahedron” [124] level-set surface,

S =

{
x ∈ R3

∣∣∣∣ 3∑
i=1

(
(xi − 2)2(xi + 2)2 − 10x2i

)
+ 3

(
x21x

2
2 + x21x

2
3 + x22x

2
3

)
+ 6x1x2x3 = −22

}
.

S and C can also have mixed representations. For example, Figure 4.14 shows the geodesic
distance (using h = 0.00625) to the trefoil knot (a.k.a. torus knot with a = 2 and b = 3,
see (4.17)) on a torus with minor and major radii 1 and 2, respectively. The trefoil knot uses
a parametric representation while the torus uses an analytical closest point representation.

78

Figure 4.14: Geodesic distance to a parametric curve (black) on an analytical closest point
surface.

4.4.3 Vector Field Design

Designing tangent vector fields on surfaces is useful in many applications including texture
synthesis, non-photorealistic rendering, quad mesh generation, and fluid animation [36,
194]. One approach for vector field design involves the user specifying desired directions
at a sparse set of surface locations, which are then used to construct the field over the
entire surface. Adapting ideas from Turk [175] and Wei and Levoy [181], we interpret the
user-specified directions as Dirichlet IBCs and use diffusion to obtain the vector field over
the whole surface.

We iterate between heat flow of the vector field and projections onto the tangent space
to obtain the tangent vector field over all of S. Specifically, each iteration involves the
following steps:

1. Perform heat flow independently for each component of u = [u1, u2, u3]T according
to

∂ui

∂t
= ∆Su

i, with

{
ui = gi, or

∇Su
i · bC = 0,

on C,

starting from the vector field after the previous iteration.

79

2. Project u(xj) onto the tangent space of S using nS at cpS(xj)

u(xj) =
(
I− nSnS

T
)
u(xj).

One time-step of heat flow is performed on each iteration using implicit Euler with ∆t =
0.1h. A total of 10 iterations are used for all examples. The vector field for the first iteration
consists of zero vectors unless the direction is specified by an IBC.

Dirichlet IBCs g = [g1, g2, g3]T can be specified at points or curves. For point Dirichlet
IBCs the direction of g is any direction in the tangent space of S. Dirichlet IBCs on curves
could also specify any direction in the tangent space of S, but designing vector fields is
more intuitive when g is the unit tangent direction tC along C. Zero-Neumann IBCs are
also used within our framework to block the vector field from diffusing across C.

Figure 4.15 compares our vector field design approach with the vector heat method [155].
Three directions are specified as Dirichlet IBCs at different locations on the Dziuk surface.
Our CPM approach uses h = 0.025 and the level-set representation of the Dziuk surface for
CP queries. The vector heat method implemented in geometry-central [154] is used with
a triangulation of the Dziuk surface. Figure 4.15 (right column) shows the dot product
of the resultant vectors from our approach and the vector heat method. Both methods
produce similar vectors except near the cut locus of the IBC points. Our method provides
a smoother transition across the cut locus compared to the vector heat method, which
may be beneficial or disadvantageous depending on the application. Sources and sinks can
also appear with our method that are not seen with the vector heat method (Figure 4.15,
bottom row). The core difference between the methods is that ours applies component-
wise diffusion of the vectors, while the vector heat method couples the vector components
using the connection Laplacian. Interesting future work would determine how to handle
the connection Laplacian with CPM.

Figure 4.16 shows an example of a vector field designed on the Möbius strip using
h = 0.0064. The Möbius strip is actually a triangulated surface in this example, although
its parametric form could be used instead (see [89]). Zero-Neumann exterior BCs are
imposed automatically by CPM with first-order accuracy on the geometric boundary. This
example shows the ability of our approach to handle open and nonorientable surfaces.
There are four points and two curves specifying the IBCs in Figure 4.16. A circular
closed curve demonstrates that vortices can be created. The other curve on the Möbius
strip enforces a zero-Neumann IBC that blocks direction changes in the vector field (see
Figure 4.16 zoom).

Figure 4.17 shows another example on a parametric surface of revolution (with h =
0.025), which is constructed by revolving the planar parametric curve (4.18) with c = 1

2

80

Ours Vector Heat Method [155] Dot Product

Figure 4.15: Our CPM approach vs. the vector heat method when designing a vector field
using three user-prescribed directions (white) on the Dziuk surface. The resultant vector
field (black) is consistent away from the cut locus of the IBC points, since the dot product
between the vectors produced by each method is close to 1 (colour scale goes from −1 for
purple to 1 for yellow).

81

Figure 4.16: Vector field design on a triangulation of a Möbius strip, which is an open and
nonorientable surface.

Figure 4.17: Vector field design on a parametric surface of revolution, with Dirichlet IBCs
on a parametric curve and points shown in white.

82

around the z-axis. All IBCs in this example are Dirichlet IBCs. Sinks and sources in
the vector field are created with four Dirichlet point IBCs. The curve IBC is a two-sided
Dirichlet IBC that flips the direction of the vector field across C (see Figure 4.17 zoom).

A final vector field design example, on the Lucy surface, is given in Figure 4.18. A
point cloud representation of the Lucy surface (vertices of a mesh [171] with ∼1 million
vertices) is used and the closest point function is defined to return the nearest neighbour; for
dense enough point clouds this suffices. For less dense point clouds a smoother closest point
function is required, for example using a moving-least-squares based projection method [83,
192]. Nevertheless, the variable point density (i.e., higher density on head, wings, hands,
and feet) of the Lucy point cloud in Figure 4.18 (left) does not present any issue in this
example.

4.4.4 Harmonic Maps

A map between two manifolds, S1 and S2, matches locations on S1 with locations on S2.
The map can be used to analyse differences between S1 and S2 or to transfer data from
one manifold to the other. Harmonic maps are a specific type of map that appears in
numerous domains, e.g., mathematical physics [14] and medical imaging [159, 160]. In
computer graphics, harmonic maps can be used for many applications such as texture
transfer, quad mesh transfer, and interpolating intermediate poses from key-frames of a
character [46].

King and Ruuth [72] considered applying CPM to compute harmonic maps u(y) : S1 →
S2. Adapting their approach, we compute the harmonic map using the gradient descent
flow

∂u

∂t
= ΠTuS2(∆S1u),

u(y, 0) = f(y),

u(y, t) = g(y), for y ∈ C1,

(4.20)

where ΠTuS2 is the projection operator at the point u onto the tangent space of S2. The
vector ∆S1u is defined componentwise, i.e., ∆S1u = [∆S1u

1,∆S1u
2,∆S1u

3]T . The f(y) and
g(y) are the initial map (from S1 to S2) and the landmark map (from C1 ⊂ S1 to C2 ⊂ S2),
respectively. The subsets C1 and C2 can be landmark points or curves on S1 and S2 that are
enforced to match using our new Dirichlet IBC treatment; such IBCs were not considered
by King and Ruuth [72].

An operator splitting approach was used by King and Ruuth [72], which allows (4.20)
to be solved with a PDE on S1 alone. Specifically, one time-step consists of the following:

83

Figure 4.18: Vector field design on a point cloud surface (left), with Dirichlet IBCs on
polyline curves and points shown in white. The resulting vector field is visualized with
flow lines on a triangulation of the point cloud (right).

84

1. Solve (4.20) without the ΠTuS2 term using CPM on Ω(S1) with Ω(C1) to enforce the
IBC.

2. Project the solution from (1) onto S2.

Denote the solution from step (1) at xi ∈ Ω(S1) and time-step k by vki . The projection in
step (2) simply moves vki to its closest point on S2 by setting uki = cpS2(v

k
i). One time-step

of explicit Euler is used for step (1) with ∆t = 0.1h2 starting from uk−1. More information
on harmonic maps and the algorithm of King and Ruuth [72] is given in Section 6.1.

To perform the above gradient descent flow a valid initial map u0 is needed to start
from. Generating such initial maps in the general case has not yet been addressed for
CPM [72]. Approaches based on geodesic distance to landmark curves/points C1, C2 could
potentially be adapted [46, 159]. However, for our illustrative example of incorporating
IBCs while computing harmonic maps, we opt for a simple (but restrictive) initial map
construction. The surface S1 is given by a triangulation and deformed to create S2 while
maintaining the same vertex connectivity. Therefore, the barycentric coordinates of each
triangle can be used to initially map any point on S1 to a point on S2.

Figure 4.19 shows an example of computing harmonic maps from the Bob [32] surface
S1 to its deformed version S2. Grid spacing h = 0.00663 is used for Ω(S1). The surfaces
are visualized as point clouds. S1 is visualized with the set of closest points of grid points
in Ω(S1). Each point in the point cloud for S1 has a corresponding point location on S2

given through the mapping u. A texture is added to the surface of S1 and transferred to
S2 through the mapping u.

To emphasize the effect of computing the harmonic map, noise is added to the initial
map (see Figure 4.19 (b)) before performing the gradient descent flow. The gradient
descent flow is evolved to steady state using 1500 and 200 time steps with and without
the IBC in Figure 4.19 (d) and (c), respectively. The harmonic map with a Dirichlet IBC
stretches on one side of C2 and compresses on the other side to satisfy both the PDE and
IBC. Comparing the zoom of Figure 4.19 (c) and (d), the point cloud density in (d) is
more sparse on one side of C2 than in (c) due to the stretching of the map, leaving visual
gaps between points in the cloud. The distortion is expected unless the IBC map g is a
harmonic map itself.

4.4.5 Reaction-Diffusion Textures

Much research in geometry processing has focused on Poisson and diffusion problems.
There are however applications that require solving more general PDEs, e.g., reaction-

85

(a) S1 with Texture (b) Initial Map onto S2

(c) Harmonic Map onto S2 w/o IBCs (d) Harmonic Map onto S2 w/ IBCs

Figure 4.19: Maps from S1 to S2 with a texture for visualizing the mapping. Landmark
curves (Dirichlet IBCs) C1 and C2 are shown in white. (a) S1 with texture. (b) S2 with
texture from a noisy initial map. (c) S2 with a CPM harmonic mapped texture without
IBCs. (d) S2 with a harmonic mapped texture using our CPM approach satisfying the
IBCs. The surfaces are displayed as point clouds. The cpS1 and cpS2 are computed from
triangulations, while cpC1 and cpC2 are computed from polylines.

86

Figure 4.20: Reaction-diffusion texture on a fish surface with zero Dirichlet IBCs around
the eye and on the tail. A two-sided zero Dirichlet-Neumann IBC is imposed on the dorsal
fin. The surface is coloured yellow for high concentrations of reactant u and purple for low
concentrations. The cpS are computed from a triangulation, while the cpC are computed
from polylines.

diffusion textures [174]. Reaction-diffusion textures involve solving coupled equations on
surfaces. These PDEs can form patterns from random initial conditions and have been
solved on meshes [174], level sets [18], and closest point surfaces [90]. Here we impose
IBCs to control regions of the texture, emphasizing the generality of CPM, and our novel
boundary condition treatment, with respect to PDE type.

The Gray-Scott model [125]{
∂u
∂t

= µu∆Su− uv2 + F (1− u),
∂v
∂t

= µv∆Sv + uv2 − (F + k)v,
(4.21)

with {
u = gu or ∇Su · bC = 0,

v = gv or ∇Sv · bC = 0,
on C, (4.22)

is solved with CPM. Figure 4.20 shows u on a fish [31] for a set of IBCs. The constants
µu = 1.11 × 10−5, µv = µu/3, F = 0.054, k = 0.063 are used with forward Euler time-
stepping until t = 10, 000 with ∆t = 0.9 and h = 0.01. The initial condition is taken as
u = 1− p, v = p/2 where p is given by small random perturbations around

1

2
e100(z−0.1)2 +

1

2
.

87

Zero Dirichlet IBCs allow stripes to be placed around the dorsal fin and tail. The upper
side of the dorsal fin IBC is a zero Neumann IBC, which causes the pattern to intersect
perpendicular to the IBC curve. A closed (zero Dirichlet) IBC curve allows for control of
concentrations of the reactants u and v in the eye.

4.5 Summary and Future Work

This chapter extended CPM to solve manifold PDEs with interior boundary conditions
(Dirichlet and zero-Neumann) while obtaining up to second-order accuracy. The ability
to enforce IBCs enabled CPM to be applied to many PDE-based geometry processing
tasks and applications that were not previously possible. We showed that our first-order
version has a lower error constant compared to that of Auer et al. [7]. Furthermore, the
method Auer et al. [7] proposed only applies to Dirichlet IBCs, but ours handles both
Dirichlet and Neumann. We also introduced the nearest point approach (Section 4.2.8) for
Dirichlet IBCs, which is less accurate than our main approach for IBC treatment, but is
more accurate than the method of Auer et al. [7]. This nearest point approach may be
preferred when accuracy is less important than avoiding the complexities of introducing
duplicate DOFs.

CPM work to date has only addressed Dirichlet and zero-Neumann (exterior) BCs.
Macdonald et al. [90] solved a surface-to-bulk coupled PDE with Robin BCs on the bound-
ary of the bulk (but S was closed, i.e., ∂S = ∅). Extending CPM to impose inhomogeneous-
Neumann, Robin, and other types of BCs is an important area of future work. Fortunately,
the interior BC framework developed here directly generalizes existing CPM approaches
for exterior BCs; therefore, our work likely makes any future extensions of CPM for other
exterior BC types immediately applicable to interior BCs as well.

Third-order and higher (exterior and interior) BCs are also important for higher-order
PDE discretizations. CPM itself extends naturally to higher order, but CPM with higher-
order exterior BCs has not yet been explored. Macdonald et al. [89] pointed out that a
replacement for cpS is required to incorporate the curvature of S near ∂S. For higher-order
interior BCs an improved S⊥ crossing test (4.8), involving curvatures of S near C, is likely
also needed.

88

Chapter 5

Monte Carlo Closest Point Method

For volumetric PDEs, Monte Carlo methods have recently garnered significant attention
in the graphics community due to their unique advantages over traditional discretization-
based PDE solvers, including the ability to estimate solution values in a pointwise, spa-
tial discretization-free manner. One such method is the walk-on-spheres (WoS) method
[110] introduced to graphics by Sawhney and Crane [140]. They primarily focused on
the (constant coefficient) Poisson and screened-Poisson equations in a volumetric domain,
and follow-up work likewise emphasizes volumetric problems. In this chapter, we consider
instead the problem of solving surface PDEs.

Sawhney et al. [141] proposed an extension of WoS to support second-order linear
elliptic PDEs with spatially varying coefficients, and as one application, they demonstrated
a method to solve the Laplace equation on a 2D surface embedded in 3D. However, this
approach requires that the conformal parametrization of the surface be readily available,
limiting the method’s applicability.

We propose a simpler generalization of WoS for surface PDEs, the projected walk-on-
spheres (PWoS) method, which only assumes the availability of a closest surface point
query and an unoriented surface normal direction query. PWoS supports Dirichlet bound-
ary conditions and inherits the advantages of WoS: PWoS is a pointwise, discretization-free
Monte Carlo method. Since our method does not require the meshing of the surface, it is
particularly advantageous over traditional approaches, such as the finite element method,
when the computation can be localized and when the surface is given as an implicit rep-
resentation, such as a signed distance function. The resulting solution is also free of
mesh-dependent discretization artifacts, such as from linear interpolation, as we show in
Figure 5.1. Compared to WoS, which performs walks on spheres inside the domain, PWoS

89

performs walks on spheres inside a Cartesian embedding neighbourhood domain around the
surface. After each step of the walk, it projects the sampled point on the sphere onto the
surface. We motivate this simple modification to the original WoS through its connection
to the closest point method [138, 96].

To confirm PWoS’s accuracy, we perform convergence studies of the method applied to
the surface Poisson and screened-Poisson equations. Finally, we demonstrate its use on two
representative graphics applications: diffusion curves and geodesic distance computation.

5.1 Background

This section briefly reviews the two core mathematical ideas on which our method is based.

5.1.1 Walk-on-Spheres

WoS solves volumetric PDEs such as the Poisson equation ∆u = f over a Cartesian
domain in Rd, with Dirichlet boundary conditions. Consider a d-ball Br(x), centred at x
with radius r, fully contained within the domain. The integral equation

u(x) =
1

|∂Br(x)|

∫
∂Br(x)

u(y) dy +

∫
Br(x)

f(z)G(x, z) dz (5.1)

holds for the Poisson equation ∆u = f in general, where |∂Br(x)| denotes the surface
area of the sphere that bounds the ball Br(x) and G denotes the Green’s function for the
Poisson equation on Br(x) [140]. On the right-hand side, the first term is a boundary
integral over the (d− 1)-sphere, and the second term is a volume integral over the d-ball.
If we perform Monte Carlo integration of the first term by uniformly sampling a point on
the sphere and of the second term by sampling NV points zi inside the ball with probability
density function (PDF) p(zi), we get the recursive relationship used in WoS:

û(x) = û(y) +
1

NV

NV∑
i=1

G(x, zi)f(zi)

p(zi)
, (5.2)

where the hat notation indicates that a variable is a Monte Carlo estimate. The first term
on the right-hand side is also a Monte Carlo estimate because the solution u(y) is unknown
at point y in general. At each recursion step, WoS applies this recursive relationship to
the largest ball inside the domain bounded by Dirichlet boundaries. It terminates the

90

Figure 5.1: View-dependent diffusion curves with PWoS. Using our method, we solve the
Laplace equation on a curved surface in a view-dependent manner. The pointwise and
discretization-free nature of PWoS allows for the evaluation of the colours only at visible
points where the object colour is required by a shading algorithm with stochastic pixel-
filtering.

91

recursion when the sample point x during the recursion falls within a small distance ϵ of
the domain boundary, by using the known solution at the closest boundary point x as the
solution estimate: û(x) = u(x). WoS thereby estimates the solution at each evaluation
point independently, offering intrinsic parallelism. Our method generalizes WoS, originally
proposed for volumetric PDEs, by incorporating the closest point extension theory of CPM.

5.1.2 Surface PDEs and Closest Point Extension

For a full review of CPM for surface PDEs and the CP extension see Chapter 2. In this
section, we briefly recall the important CPM theory used for our Monte Carlo approach
(for the reader’s ease). Consider the Poisson equation defined on a surface S

∆SuS(y) = fS(y), y ∈ S. (5.3)

For convenience, we will use the word surface to refer to any nonzero codimension object
in Rd, including mixed-codimension objects. In general, the mapping cpS(x) may not be
unique: there may exist more than one closest point for a given x. The neighbourhood
N (S) where the closest point function is unique is a spatially adaptive tube where rN (S)
is a function of x such that

rN (S)(x) < LFS(cpS(x)),

where LFS(y) is the local feature size at point y ∈ S. The local feature size is defined
as the minimum Euclidean distance from y to the medial axis med(S) [4]. The medial
axis med(S) is the set of points in Rd where there is more than one closest point. Note
that when S is a closed surface the definition of the medial axis that we use contains both
the interior part that is bounded by S and the exterior part that lies outside the bounded
domain.

Within N (S), or a subset of it, surface differential operators can be replaced by Carte-
sian differential operators with CP extensions E. The embedding PDE on N (S) for (5.3)
is

∆[EuS](x) = f(x) + g(x), x ∈ N (S), (5.4)

where f(x) = EfS(x). Recall from Section 2.2.3 that g(x) is a function that ensures the
embedding PDE is well posed, since ∆[EuS] is not constant in the normal direction of S
but f is. The function g(x) is nonzero for x ∈ N (S) \ S and g|S = 0 to ensure (5.4) is
consistent with the surface PDE (5.3) on S. Any function g with these conditions has the
form g(x) = γ(v(x)− Ev(x)), where γ ∈ R and γ ̸= 0.

92

The Macdonald-Brandman-Ruuth [89] approach (see Section 2.2.3) takes v|S = uS
to allow (5.4) to be written as an equation in one unknown, v(x), since EuS = Ev (but
importantly v ̸= Ev except on S). We instead do not restrict v|S to be uS and interpret g(x)
as a modification to the source term f(x), then solve for the unknown solution u(x) = EuS
in (5.4). As proven by von Glehn et al. [177, Section 3.2], u(x) = Eu(x) since u(x) is the
extension of a surface function. The property that u(x) = Eu(x) = u(cpS(x)) allows our
projection step during the walk in PWoS, detailed in Section 5.2.

We show through our numerical examples that taking g(x) = 0 for all x ∈ N (S), pro-
vides qualitatively correct results for graphics applications and quantitatively convergent
results in most examples. However, the choice of g(x) = 0 causes (5.4) to be ill-posed
as discussed above, and we observe some bias in some convergence studies in Section 5.3
when f is complex or LFS is small. Interesting future work would involve constructing a
more accurate g(x) function to improve convergence.

Chen and Macdonald [24] (Section 2.2.4) show an alternative approach to obtain a solu-
tion in the embedding space that satisfies u = Eu, but it involves modifying the embedding
PDE in a way that is inconsistent with WoS. They extend the Cartesian Laplacian, i.e.,
they use E[∆v] instead of ∆[Ev] in the embedding PDE. Applying the extension after the
Laplacian would invalidate the use of the mean value theorem in WoS since it is no longer
the Cartesian Laplacian of a function.

In the traditional CPM, one solves the embedding PDE inside a narrow tubular subset
of N (S) that is within a constant distance to S. For the typical grid-based variant, the
tubular subset is spatially discretized with a grid of uniform spacing. Interpolation and
finite differences are applied on the grid to approximate the CP extension and the spatial
Cartesian differential operators, respectively, and then the resulting linear system is solved.
Other variants of CPM [127, 132, 25] also require some discretization within N (S). Thus,
while traditional CPM is agnostic to the specific surface representation, it still discretizes
the embedding space and solves a globally coupled system. Moreover, imposing exterior or
interior boundary conditions requires tedious grid operations (see Chapter 4). By contrast,
we develop a spatial discretization-free, pointwise Monte Carlo estimator for surface PDEs
by incorporating the closest point extension concept into WoS.

When there are Dirichlet boundaries C ⊂ S, on which the solution uS is given, one
can geometrically extend the boundary itself out into the embedding space in the normal
directions, assigning it the same boundary value in accordance with the CP extension.
Note that such boundaries need not coincide with the geometric boundaries of the surface
itself. In the context of grid-based CPM, Chapter 4 discusses how to impose such boundary
conditions by duplicating degrees of freedom near the extended boundary. In our work,

93

we devise a method that uses only the closest point function cpC(x) to the (pre-extension)
boundary C, without the need to construct the extended boundary geometry or perform
any complex duplication of degrees of freedom.

5.2 Method

While our algorithm is generalizable to other configurations, we describe our method for
the case when S is embedded in R3 and dim(S) = 1, 2. Recall that we use the word surface
to refer both to “surfaces” with dim(S) = 1 (curves) as well as dim(S) = 2 surfaces. We
also allow mixed codimension where parts of the surface have dim(S) = 1 and the rest of
the surface has dim(S) = 2.

We assume that we can query the closest point function cpS(x) for x ∈ R3. Additionally,
for surfaces with dim(S) = 2, we assume that we can query the unoriented normal direction
of the surface n(x) for x ∈ S. For surfaces with dim(S) = 1, we assume that we can query
the tangential direction of the surface t(x) for x ∈ S. These assumptions are valid for
common surface representations, including, but not limited to, polygonal meshes, oriented
point clouds, and implicit functions.

Additionally, we assume the Dirichlet boundaries C have a lower dimension than the di-
mension of S and support the closest point query cpC. When solving a two-sided boundary
value problem for boundaries with dim(C) = 1, we also assume that we can query the tan-
gent direction of C. The theory discussed in Section 5.1.2 is based on the assumption that
S is smooth; in practice, we observe that applying our technique on discretized surfaces
with sharp features behaves well as we show in Section 5.3.

The core idea of our method is to apply the WoS recursive relationship within N (S)
while utilizing the CP extension constraint that u(x) = u(cpS(x)). To do so, we modify
the walk process to use spheres contained within N (S) and to project the walk position at
each recursion step, as illustrated in Figure 5.2.

The problem we solve is the embedding PDE ∆u(x) = f(x) + g(x) within N (S). The
Monte Carlo estimate of (5.2) holds by assuming g(x) = 0 because the embedding PDE
is defined with the Cartesian differential operator. To estimate the surface PDE’s solution
at point x ∈ S, we consider a 3D ball centred at x and fully contained inside N (S).
Theoretically, it should be the largest ball fully contained inside N (S) that does not cross
the extended Dirichlet boundaries C, to minimize the number of steps needed to reach the
boundary. We determine the radius of such a ball by taking the minimum of a conservative

94

Algorithm 2: Projected Walk-on-Spheres

Input: surface S, boundary C, evaluation point x ∈ S, sample walk count NP ,
volume sample count NV , tolerance ϵ

Function EstimateSolution(S, C, NP , NV , x, ϵ):
M← medialAxisPointCloud(S) // Section 5.2.1

ûsum ← 0
for n← 1 to NP do

û ← RecursiveEstimate(S,M, C, NV , x, ϵ)
ûsum ←ûsum + û

end
return ûsum/NP

Function RecursiveEstimate(S,M, C, NV , x, ϵ):
δ ← distanceToBoundary(S,M, C, x) // Section 5.2.2

if δ < ϵ then
return u(cpC(x))

l← localFeatureSize(S,M, x) // Section 5.2.1

r ← min(l, δ)
y ← uniformSphereSample(center=x , radius=r)
ûsphere ← RecursiveEstimate(S,M, C, NV , cpS(y), ϵ)
{z1, ...zNV

} ← ballSample(center=x , radius=r)

ûball ← 1
NV

∑NV

i=1
G(x,zi)f(cpS(zi))

p(zi)

return ûsphere + ûball

95

x

shifted med(S)

S

ϵ-shell
extended C

Figure 5.2: A PWoS path for the Laplace equation on a grey 1D (curve) surface embedded
in 2D space, starting from x and terminating at the extended Dirichlet boundary C.

(under-)estimate of the local feature size at point x (Section 5.2.1) and the distance to the
(extended) Dirichlet boundaries (Section 5.2.2).

In (5.2), the Monte Carlo estimate of the solution on the sphere, û(y), needs to be
evaluated at point y, which does not lie on S in general. The CP extension constraint of u
provides a convenient relationship here: the embedding PDE’s solution at point y should
coincide with the surface PDE’s solution at the projected point, cpS(y). We can therefore
project the point y onto S at the end of each recursion step hence û(y) = û(cpS(y)).
After this projection at the end of each step, we continue the recursion. The source term
similarly uses the closest point projection for the CP extension, replacing the recursive
relationship of WoS (5.2) with

û(x) = û(cpS(y)) +
1

NV

NV∑
i=1

G(x, zi)f(cpS(zi))

p(zi)
. (5.5)

We choose p(zi) ∝ 1/∥x− zi∥2 in our implementation.

Analogous to the original WoS method, we terminate the recursion when the point x
falls within a distance ϵ of the (extended) Dirichlet boundary by taking the boundary value
u(cpS(x)). We provide pseudocode for an instance of our algorithm in Algorithm 2, where

96

Local Feature Size Avg. Step Count
0.99 31.1398
0.5 47.84
0.25 128.981
0.125 462.781
0.0625 1818.73

Figure 5.3: Average number of steps required with different conservative local feature size
estimates. While any positive value smaller than 1 is valid for this setup, using a local
feature size estimate that is too small leads to excessively long walks.

we highlight the difference between our proposed method and WoS. We also provide a
visualization of a potential path of our algorithm when S is embedded in R2 in Figure 5.2.

Notably, PWoS is a generalization of the WoS algorithm: when dim(S) = d (i.e.,
the codimension-zero case), the local feature size is infinite, the distance to the Dirichlet
boundary C can be computed with the closest point query cpC, and the last closest point
projection of y has no effect since cpS(y) = y. When dim(S) < d, in addition to the closest
point projection at the end of each recursion step, our algorithm utilizes two nontrivial
steps: the local feature size estimation using a medial axis point cloud and the computation
of the distance to the (extended) Dirichlet boundary. We discuss these in the following
two subsections.

5.2.1 Local Feature Size Estimation

To determine the radius of the sphere centred at x ∈ S that is fully contained inside N (S)
at each recursion step of the walk, we need a conservative lower bound estimate for the local
feature size at x. One naive approach would be to use a small enough positive constant
value for all x ∈ S, similar to the grid-based CPM without spatial adaptivity [138]. This is
a valid strategy, but it would often yield a sphere radius smaller than necessary, requiring
more recursion steps for the walks to reach a Dirichlet boundary and making the method
inefficient. Figure 5.3 illustrates a result of our algorithm on a unit sphere using different
(artificial) local feature size estimates. The analytical local feature size of this surface
is 1 everywhere. Although using any smaller value would still give consistent results, it
significantly increases the average step count for the walks.

97

High Mid

Low
101 102 103

10−1

10−1.5

10−2

10−2.5

High
Mid
Low

Figure 5.4: Effect of local feature size on convergence speed. The vertical axis of the
convergence plot represents the root mean squared error (RMSE), while the horizontal
axis shows the time in seconds.

Figure 5.4 further compares the error versus runtime of our method for problems with
different local feature sizes. We bend a rectangular strip of size 10 by 2 units along
sinusoidal curves with high, medium, and low frequencies (top left, top right, and bottom,
respectively, in Figure 5.4) and solve the Laplace equation. The analytical solution is
defined as the distance along the longer edge of the strip from one of the shorter edges. We
used 1000 sample evaluation points. The runtime in seconds is measured on a MacBook
Pro with an M1 Pro chip. The geometry with a larger local feature size allows for faster
convergence with lower bias. For more complex shapes, one cannot compute the analytical
local feature size in general and using a small constant value in its place is inefficient. This
issue motivates our need for a better local feature size estimate.

To estimate the local feature size, we compute a point cloud approximation of the
medial axis and estimate the local feature size as the distance from any query point x ∈ S
to its nearest point in the medial axis point cloud. One could use any local feature size
estimation algorithm and/or medial axis extraction algorithm (see e.g., [167]), such as
one that outputs or uses the medial axis’ connectivity. Since such methods are often
comparatively costly, we employed a simple point-cloud-based method, which we describe
below.

98

Medial Ball Extraction

We first densely scatter points xi inside a ball in R3 having a radius equal to half the
length of the diagonal of the bounding box of S, so the entire surface is fully enclosed. For
each point xi, we use the closest point query cpS(xi) to compute its two opposing normal
directions at cpS(xi). Specifically, we normalize the vector xi − cpS(xi) to get the first
direction and invert its direction to get the second one. We then use the method of Ma
et al. [86] to extract a point cloud that represents the medial axis, as follows. For each
side of the surface (i.e., each normal), we start with a large sphere tangent to cpS(xi),
whose centre necessarily lies on the normal ray. The initial radius of the ball is set to the
length of the diagonal of the bounding box of S. Then, we iteratively shrink the size of
the sphere, moving its centre to maintain tangency at the surface point cpS(xi), until the
closest surface point from the centre of the sphere does not change.

Algorithm 3: Medial Ball Centre Extraction

Given: Point x, initial sphere radius r, # max iterations K, tolerance tol

n← (x− cpS(x)) /∥x− cpS(x)∥
while k < K do

k ← k + 1
p← cpS(cpS(x) + rn)
v← p− cpS(x)
if ∥v∥ < tol OR v · n < tol then

return cpS(x) + rn
end
rprev ← r

r ← ∥v∥
v·n

if rprev - r < tol then
return cpS(x) + rn

end

end

This algorithm gives medial balls, i.e., balls with their centres on the medial axis. As
the number of initial scattered points increases, the extracted point cloud balls tend to
cover the entire medial axis. While Ma et al. [86] assumed that the surface is represented
as an oriented point cloud, we observed that the algorithm works well with the closest point
surface representation by adjusting its termination criteria. As shown in Algorithm 3, we

99

terminate if the distance between closest points is small, if the projection onto the normal
vector of the difference between closest points is small, or if there is little change in the
radius of the medial ball. Figure 5.5 (a) is an example of computing the medial axis point
cloud for the Dziuk surface parameterization with tol = 10−3.

Scale Axis Pruning

Directly using the medial ball centres as the medial axis point cloud does not work well in
general when S contains any noise or artificial sharp corners introduced by the discretiza-
tion of a smooth surface. Figure 5.5 (b) shows that Algorithm 3 produces many undesirable
medial ball centres on S itself when used on a relatively smooth triangulation of the Dziuk
surface. This is expected since the exact medial axis will touch all edges/vertices in a
concave region of any triangulation. Also, unwanted noise is present in Figure 5.5 (b).

We therefore prefer to estimate (only) the stable part of the medial axis, which is
not affected by any small perturbation of S. A common solution is, therefore, to prune
unstable components of the medial axis, which itself remains an active research topic [167].
We take inspiration from the scale axis transform (SAT) [51, 100], but design an alternative
since SAT considers topology information of the medial axis, which is unnecessary for local
feature size estimation. Our alternative is simpler and faster since topology information
is omitted. We first scale all the medial balls by a constant factor s > 1. Then, for any
pair of medial balls Br1(x1) and Br2(x2), we remove the smaller ball from the set of medial
balls if it is fully contained in the other. That is, if s · r1 < s · r2 + ∥x1 − x2∥2, we remove
the ball Br1(x1).

Note that some of the medial balls may have a very large radius before pruning. For
example, an exterior medial ball for a surface of a convex shape would have an infinite
radius in theory (but our algorithm returns at most the length of the diagonal of the
bounding box of S). When such large medial balls are used in our pruning algorithm, they
can easily (and undesirably) remove important, stable parts of the medial axis. The original
SAT approach was applied only to the interior medial axis of closed surfaces. Therefore,
this issue was not observed since the interior medial ball radii are always bounded and
proportional to the size of local features of S.

To address this problem, we consider each pair of tangent balls generated at the same
surface point, and replace the larger one with a tangent ball having the radius of the smaller
one. In other words, before we prune the medial axis, we shift the medial ball centres of
the larger medial ball in the pair and shrink its radius. In Figure 5.2, we visualize the
medial ball centres after this shifting operation. Figure 5.5 (c) and (d) also visualize using

100

(a) Parameterization (b) Triangulation

(c) Tri. + Our Scale axis transform. (SAT) (d) Tri. + Our SAT + Shifted

Figure 5.5: Medial axis point clouds computed (blue) using Algorithm 3 on different surface
representations (green) and with different pruning methods.

101

our SAT with and without shifting the medial axis point cloud, respectively. It is not
obvious from this example that shifting the medial axis helps to save the stable part of the
medial axis (but we have observed this on other S). However, it is possible for a medial
ball outside of S whose radius is scaled by a factor s > 1 to completely engulf all of S
(worst-case scenario). Adjusting the scaling parameter s allows us to control the pruning
strength. Unless otherwise stated, we use the value s = 1.15 for our results.

After this pruning, the set of medial ball centres gives the medial axis point cloud we
use to estimate the local feature size. Figure 5.6 shows the local feature size computed
from the medial axis point clouds in Figure 5.5. Figure 5.6 (a) is the most accurate
since using the parameterization of the Dziuk surface gives the most accurate medial axis
point cloud. The local feature size is drastically underestimated in Figure 5.6 (b) since
the medial axis point cloud touches S almost everywhere. Figure 5.6 (c) and (d) show
that using our SAT pruning gives more accurate local feature size estimation. As seen in
Figure 5.6 (d), one disadvantage of shifting the medial axis point cloud before using our
SAT is the underestimation of local feature size. However, the shifting will never cause an
overestimate of the local feature size, since we only move the medial axis closer to S.

Conservative and Nonzero Local Feature Size

As the medial axis is represented as a point cloud and the nearest point distance may give
a larger value than the actual local feature size, we multiply by a small constant (0.9 in our
implementation) to ensure a conservative estimate of the local feature size. When there
are sharp corners in the geometry, the analytical local feature size is zero, and the walk will
become stuck. To prevent this problem, when the estimated local feature size is smaller
than a positive constant threshold λ, we return λ as the local feature size estimate instead.
This process essentially rounds sharp corners with rounding radius λ. The uniform grid
size adopted in grid-based CPM has a similar effect. We do not observe any significant
error due to this rounding, as we show in Section 5.3.

5.2.2 Distance to Extended Dirichlet Boundaries

Dirichlet boundaries C are extended in the normal direction of S and the solution in the
embedding space on this extended boundary is determined by the CP extension of Dirichlet
values on C. Therefore, we need to compute the minimum distance to the extended Dirichlet
boundaries, and limit the sphere radius in PWoS further if it is less than the local feature
size. To determine the distance to the extended Dirichlet boundary from point x ∈ S,

102

0.002 0.73

(a) Parameterization (b) Triangulation

(c) Tri. + Our SAT (d) Tri. + Our SAT + Shifted

Figure 5.6: Local feature size estimates for points on the Dzuik surface using the corre-
sponding medial axis point clouds computed in Figure 5.5.

103

we first find the closest point that lies on the boundary before the extension, cpC(x).
The subset of the extended boundary that is extended from cpC(x) takes the shape of a
line segment when dim(S) = 2 and a disk when dim(S) = 1. We set the line segment’s
half-length or the disk radius to the local feature size at cpC(x) using the algorithm in
Section 5.2.1. We can compute the distance from the point x ∈ S to this line segment or
disk without explicitly constructing the extended boundary geometry. When dim(S) = 2,
the distance δ to the extended boundary is given by

r = cpC(x)− x,

δ = ∥r− clamp(r · n,−l, l) · n∥2,
(5.6)

where n and l are the surface normal and the local feature size estimate at cpC(x), respec-
tively. When dim(S) = 1, the normal direction is not uniquely defined, so we instead use
a similar method based on the surface tangent t:

q = r− (r · t)t,

δ =

{
|r · t|, if ∥q∥2 < l,

∥r− l · (q/∥q∥2)∥2, otherwise.

(5.7)

5.3 Convergence Studies

We conducted error convergence studies of our method using discretized surfaces. In each
scene we change the number of sample paths NP to plot the root mean squared error
measured against the analytical or reference solution. The scene setup includes Laplace,
Poisson, and screened-Poisson equations, and both smooth surfaces and surfaces with sharp
corners. A generalization of our method allows us to handle the screened-Poisson equation.
See [164, Section 3.3.1] for details.

In each of the examples in Figures 5.7 and 5.8, we show the visualization of the scene
setup (top), error convergence plot (middle), and scene description (bottom). The scene
visualizations show the analytical or reference solution of the problem by mapping the
range of solution values to the green-to-purple colour gradient and placing a white point
or curve on the Dirichlet boundary. In all scenes, we use ϵ = 0.001 and NV = 32 except
for Laplace equations, for which we use NV = 0.

While the expected O(1/
√
NP) is achieved in most scenes, the bias remains high (i.e.,

the error plateaus as NP increases) when an aggressive medial axis pruning parameter is
used (see Figure 5.7 (c)) and when the source term of the problem is relatively complex (see

104

20 25 210

10−0.5

10−1

10−1.5

10−2

(a) Helix
Ends

Laplace

20 25 210

100

10−0.5

10−1

10−1.5

(b) Helix
Ends

Poisson

20 25 210

10−0.5

10−1

10−1.5

(c) Z-Order
(s = 1.15)

Ends

Poisson

20 25 210

10−0.5

10−1

10−1.5

(d) Z-Order
(s = 1.05)

Ends

Poisson

20 25 210

101

100.5

100

10−0.5

(e) Circle
Two-sided

Poisson

20 25 210

10−0.5

10−1

10−1.5

(f) Torus
Torus Knot

Laplace

20 25 210

10−0.5

10−1

10−1.5

(g) Dziuk Surface
Closed

screened-Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(h) Dziuk Surface
No Boundary

Screened Poisson

Figure 5.7: Error convergence. The vertical axis of each error plot shows the root mean
squared error of the estimates at a few points on the surface in a logarithmic scale, and the
horizontal axis shows the number of samples NP in a logarithmic scale. We show the result
of the experiment (blue) and a line that corresponds to the desired O(1/

√
NP) convergence

rate (orange).

105

20 25 210

10−0.5

10−1

10−1.5

(a) Sphere
Closed

Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(b) Sphere
Open

Poisson

20 25 210

10−0.5

10−1

10−1.5

(c) Sphere
Closed

Screened Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(d) Sphere
No Boundary

Screened Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(e) Punched
Closed

Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(f) Punched
Open

Poisson

20 25 210

10−0.5

10−1

10−1.5

(g) Punched
Closed

Screened Poisson

20 25 210

100

10−0.5

10−1

10−1.5

(h) Punched
No Boundary

Screened Poisson

Figure 5.8: Error convergence. The vertical axis of each error plot shows the root mean
squared error of the estimates at a few points on the surface in a logarithmic scale, and the
horizontal axis shows the number of samples NP in a logarithmic scale. We show the result
of the experiment (blue) and a line that corresponds to the desired O(1/

√
NP) convergence

rate (orange).

106

Figure 5.7 (e, g, and h)). This indicates the need for future work to investigate estimating
g(x) from (5.4) to reduce the bias in such problems. The remainder of this section details
the setup for each of the convergence studies in Figures 5.7 and 5.8.

Figure 5.7 (a)

The helix curve we use has three turns, has a radius of 1, and the endpoints have a height
difference of 2. We solve the Laplace equation defined along the curve length ϕ as

∂2uS
∂ϕ2

= 0,

uS(0) = 0,

uS(ψ) = 1,

(5.8)

where the boundary conditions are specified at the two ends of the curve, ϕ = 0 and ϕ = ψ.
The analytical solution is uS(ϕ) = ϕ/ψ.

Figure 5.7 (b)-(d)

The problem we solve is defined along the curve length ϕ as

∂2uS
∂ϕ2

= 0.02,

uS(0) = 0,

uS(ψ) = 1,

(5.9)

where the boundary conditions are specified at the two ends of the curve, ϕ = 0 and ϕ = ψ,
similar to (a). The analytical solution is uS(ϕ) = 0.01ϕ2 + 1−0.01ψ2

ψ
ϕ. The helix curve in

(b) is identical to the one in (a). The z-order curve in (c) and (d) is defined using 8 points,
(±1.0,±1.0,±1.0).

Figure 5.7 (e)-(h)

The remainder of Figure 5.7 uses examples from Chapter 4 (some with slight modifications).
The problem in (e) is the same as the one detailed in Section 4.3.1.

For (f), the surface we used is a torus with a major radius R = 3 and a minor radius
r = 1. The Dirichlet boundary curve is the torus knot given in (4.17). We solve the

107

Laplace equation on the torus with boundary condition sin(s) along the curve. We used
the grid-based CPM implementation of King et al. [71] with a grid spacing h = 0.02 to
generate a reference solution and measured the error of PWoS against it.

For (g) and (h) the screened-Poisson equation in Section 4.3.3 is solved on the Dziuk
surface. For (g), we use a unit circle on the x1x2-plane with the analytical solution specified
on it as the boundary value as the Dirichlet boundary. For (h), we did not use any
boundary to show the algorithm’s convergence for the screened-Poisson equation without
any boundaries.

Figure 5.8

These scenes use the unit sphere with a spherical harmonic function as the analytical
solution as is done in the study of mesh Laplacians [19]. The sphere mesh is punched
inward at x3 = 0.25 for (e) to (h) to test the algorithm on a geometry with sharp corners.

Given a spherical harmonic Y 3
2 (x) =

1
4

√
105
π
(x21−x22)2x3 with eigenvalue−12 as the solution,

we solve the Poisson equation

∆SuS(x) = −12Y 3
2 (x), x ∈ S, (5.10)

for (a), (b), (e), and (f) and the screened-Poisson equation

∆SuS(x)− uS(x) = −13Y 3
2 (x), x ∈ S, (5.11)

for (c), (d), (g), and (h). For (a), (c), (e), and (g), we use the unit circle on the x1x2-plane
as the Dirichlet boundary, and for (b) and (f), we use the unit semicircle where x2 > 0
as the Dirichlet boundary. We observe the expected convergence behaviour with all of
the cases in Figure 5.8 despite our method’s inherent assumption of g(x) = 0. We have
not yet developed a theory that explains under what conditions this approach consistently
converges or not; however, it is noteworthy that for these (successful) examples, the source
term is a simple constant multiple of the solution.

5.4 Applications

5.4.1 Diffusion Curves

Diffusion curves [122] succinctly represent an image as a collection of curves with associated
colours. As discussed previously in Section 4.4.1, the final image, exhibiting smooth colour

108

Figure 5.9: Surface diffusion curves solved on various surface representations. The surface
on the left is represented as a combination of triangles, polylines, and oriented points. The
surface on the right is represented as a quadrilateral mesh.

gradients, is recovered by solving a Laplace equation with the curves dictating boundary
conditions. In our application, we solve the surface Laplace equation using PWoS.

With our approach, the surface need not have a boundary curve conforming to the
discretized mesh, which contrasts with the common approach [38]. Figure 5.9 shows the
reconstruction of colour at each point on the discretized surface, represented as a quadri-
lateral mesh (right) and a combination of triangles, polylines, and point clouds (left). Our
method naturally supports two-sided boundaries, with different colours specified on each
side of a curve, and surface geometries with mixed-codimension.

Additionally, the pointwise nature of PWoS allows it to be applied in a view-dependent
manner. For example, given a camera configuration, for antialiasing, we sample points
within each pixel to generate rays. We then generate PWoS samples at the ray-surface
intersection points. No computational resources are wasted on surface points that are
invisible to the camera (Figure 5.1), and we can obtain clean results without relying on
a fine discretization of the surface. Boundary integral-based approaches [12, 165] would
similarly allow domain discretization-free evaluation of diffusion curves, but they first re-
quire a global linear system solve. Moreover, such methods are not applicable to general
curved surfaces, and would need to map the results in the 2D domain to the surface via
UV coordinates, for example.

109

5.4.2 Geodesic Distance

Crane et al. [33] proposed the heat method, which solves two standard surface PDEs in
series to compute the geodesic distance from the boundary C. The steps are summarized in
Section 4.4.2. Step (2) uses the gradient of the solution to the screened-Poisson equation
found in Step (1). With a discretization-based method, a discrete gradient operator is used
to estimate this gradient. In our method, we directly evaluate the gradient of u during
Step (1) without needing u itself. This generalization of our method is detailed in [164,
Section 3.3.2].

We evaluate the gradient at mesh vertices and normalize it to get X at mesh vertices.
In Step (3), again, we do not rely on a discrete divergence operator to solve the Poisson
equation, but instead use the generalization of our method described in [164, Section 3.3.2].
When our Poisson solver requires the evaluation of X at a point, we interpolate X from
the mesh vertices and (re)normalize it. We can similarly compute the geodesic distance on
a surface represented as a point cloud.

Figure 5.10 compares our PWoS-based heat method on surfaces represented as polyg-
onal meshes or oriented point clouds against the heat method with grid-based CPM (Sec-
tion 4.4.2) and the exact geodesic distance computed with geometry-central [154]. We
compute the geodesic distance to the great circle in the center of the sphere, as well as the
geodesic distance to the boundary of the car. Our results are consistent with the reference
implementations, albeit with minor deviations.

5.5 Summary and Future Work

We have developed a Monte Carlo method for surface PDEs by augmenting the formulation
of the walk-on-spheres method with a closest point projection step. Our algorithm is
justified through its connection to the theory of CPM; an embedding PDE is solved in
the space surrounding S, and closest point projections are allowed since the solution is
constant in the normal direction of S. We have further analysed the method’s convergence
on representative analytical tests and demonstrated its application to geometry processing
problems.

PWoS currently supports only Dirichlet boundary conditions; efficient Neumann or
Robin boundary handling similar to the walk-on-stars method for volumetric PDEs [102,
142] would require the availability of a few more queries, such as a ray intersection query
against the (extended) boundaries.

110

Triangle Mesh
(Ours)

Point Cloud
(Ours)

Grid-Based CPM
(Section 4.4.2)

Exact
[154]

Figure 5.10: Geodesic distance computation with the heat method. For each of the two
scenes, we compare our algorithm on a polygonal mesh representation (leftmost) and
oriented point cloud representation (middle-left) against a grid-based CPM counterpart
(middle-right) and the exact polyhedral distance computed with geometry-central [154]
(rightmost). For the sphere surface (top), we compute the distance from the circle bound-
ary curve in the centre, and for the car surface (bottom), we compute the distance from
the surface boundary edges. Note that the rendering of the point clouds assigns a UV
coordinate per point, resulting in larger visual differences.

111

While we used a local feature size estimation algorithm to allow walks with larger step
sizes, the local feature size estimation itself imposes additional smoothness assumptions
on the surface. To respect small-scale local features, the walk can require many iterations
to reach a Dirichlet boundary. This effect is partly due to our algorithm (like WoS) being
based on an integral equation that holds only locally inside a ball. Revisiting this choice
using an integral equation based on a global relationship, such as the one underpinning
the walk-on-boundary method [163], could lead to a more efficient alternative for surface
PDEs.

Lastly, our method relied on the assumption that the CP extension compensation term
(i.e., g(x) in (5.4)) in the embedding PDE is negligible. We empirically showed that the
algorithm designed with this assumption works well when the source term has a relatively
simple expression, but we do not yet have a complete understanding of when this assump-
tion is strictly valid. However, since g(x) tends to zero continuously as x approaches the
surface, the influence of ignoring this term is expected to decrease as we shrink the embed-
ding space (i.e., shrink the sphere size). One can always take a smaller sphere size, albeit
at a higher computational cost, as we show in Figure 5.11. While limiting the sphere size
may reduce the bias, as we can observe from the intersections of the curves for the default
option and the curves for the sphere-size-constrained option, the computation may take
longer, and it is difficult to get a practical advantage. Instead, extending our method
to consider the effect of the compensation term would further improve the reliability and
broaden the applicability of our method.

112

101 102 103 104

101

100.5

100

10−0.5

0.125
0.25
0.5

Default

102 103

10−0.5

10−1

10−1.5

0.1
0.2
Default

102 103

100

10−0.5

10−1

0.1
0.2
Default

(e) (g) (h)

Figure 5.11: Using bounded sphere size. For the Poisson and screened-Poisson problems
(e), (g), and (h) in Figure 5.7, we compare the Default option of not constraining the sphere
size (apart from the limit imposed by the local feature size estimate) against specified limits
on the maximum sphere size as indicated in the legend. The vertical axis shows the root
mean squared error, and the horizontal axis shows the time in seconds. For (e), we had
1024 evaluation points, and for (g) and (h), we used 100 sample evaluation points.

113

Chapter 6

Geodesic Paths

A geodesic path is the shortest path (locally or globally) between points on a manifold.
Geodesics paths are the natural extension of straight lines in Euclidean spaces to curved
spaces. Many computer graphics applications require the computation of geodesic paths.
For example, a common task in computational fabrication is to segment and flatten digital
objects so the object can be manufactured in the real world from flat sheets of mate-
rial [151]. The borders of the flattened segments can be cut from materials using computer
numerical control (CNC) machines, such as laser cutters [117] for cloth or CNC routers
for wood. Segmenting the digital object with geodesic paths results in smooth, shorter
curves for the CNC machine paths, which allows the manufacturing process to be more
efficient. We propose a novel algorithm for computing geodesic paths on general manifold
representations given only the ability to perform closest point queries.

Much work has been done to compute the global shortest path, called the minimal
geodesic. Many of these methods focus on computing the global geodesic distance field ϕ
first, and then the geodesic path using the distance field. The path is computed by tracing
the path from the end point q to the start point p along the direction of the negative
intrinsic-distance gradient, −∇Sϕ.

This two-step approach is used by Mitchell et al. [104] for their exact polyhedral
geodesics algorithm. Surazhsky et al. [166] give an acceleration of [104]. Kimmel and
Sethian [69] provide a fast marching method to solve the eikonal equation on triangulated
surfaces to compute geodesic distance and then geodesics. Mémoli and Sapiro [113] use the
fast marching method in the embedding space to compute geodesics on level-set surfaces.
Martin and Tsai [94] provide an improvement of [113] for computing the eikonal equation
on surfaces that have both a level set and CP representation.

114

Figure 6.1: Our algorithm to compute geodesic paths is applicable to any manifold repre-
sentation that supports closest point queries. The initial path (blue) is iteratively shortened
to a geodesic (red) using our heat-based method. Manifold representation from left to right:
exact closest point queries, mesh, parameterization, level set.

The necessity of first computing the geodesic distance can be inefficient for applications
where only the geodesic path is needed (especially if only one path is computed since the
geodesic distance computation is not amortized over many paths). Furthermore, in many
applications (see e.g., [152]) only locally minimal geodesics are required, not necessarily
the globally minimal geodesic.

Many algorithms for computing locally minimal geodesics involve minimizing the length
(e.g., [193]) or the geodesic curvature (e.g., [95]). However, as Yuan et al. [193] pointed
out, existing methods have mainly been designed specifically for meshes. Xin and Wang
[187], Xin et al. [188], and Mart́ınez et al. [95] provide iterative approaches to locally
update a polyline to shorten an initial path. Xin and Wang [187] and Xin et al. [188]
use geometry-based update rules within triangle strips, while Mart́ınez et al. [95] uses
local (per polyline vertex) update rules based only on the triangles containing the polyline
vertices. Remeš́ıková et al. [136] and Wu and Tai [186] compute geodesics based on geodesic
curvature flow. Remeš́ıková et al. [136] discretizes the problem directly on the polyline.
Wu and Tai [186] use a level-set formulation of the problem and solve it on the triangle
mesh using a finite-volume method. Most recently, Sharp and Crane [152] shortened initial
paths to local geodesics on triangulated surfaces by simple edge flip operations.

The method of Yuan et al. [193] is most similar to ours. Their algorithm is based

115

on minimizing length. They show how to apply their method with meshes, point clouds,
parameterizations, and level sets. However, many of the steps in their approach must
be specifically tailored to each different discrete surface representation. Instead, we view
geodesics in the setting of harmonic maps, which leads to a unified framework for all
manifold representations that allow closest point queries. These representations include all
the ones handled by Yuan et al. [193] and many more. Figure 6.1 shows some geodesics
(red) computed on different manifold representations with our algorithm.

Our algorithm only involves computing heat flow on a 1D line segment and evaluating
closest points on the manifold. It computes the harmonic map from a 1D line segment
to the manifold, which is equivalent to the geodesic (see [45]). For this case, the CPM
for computing harmonic maps [72] simplifies drastically, which is the basis of our method.
We therefore review harmonic maps and the CPM for computing harmonic maps next.
Then our method is introduced and compared with the methods of Yuan et al. [193] and
Sharp and Crane [152]. The method of Yuan et al. [193] is the state-of-the-art (SOTA) in
terms of manifold representation generality, while the method of Sharp and Crane [152] is
the SOTA with respect to runtime to shorten the initial path (although it is restricted to
meshes).

6.1 Harmonic Maps

Harmonic maps [109, 65, 145] have been used in many applications such as texture map-
ping [42], regularization of brain images [115], colour image enhancement [169], and in-
terpolating intermediate poses from starting and final poses of a character [46]. King and
Ruuth [72] developed a CPM for harmonic maps that works for general manifolds S1 and
S2. We first review harmonic maps and their method, and then show how their approach
can be used to compute geodesic paths via harmonic maps in the next section.

A harmonic map u(x) : S1 → S2 is a mapping from a source manifold S1 to a target
manifold S2 that minimizes the Dirichlet energy

EH [u] =
1

2

∫
S1

∥∥JS1
u

∥∥2
F dS1, (6.1)

where JS1
u is the intrinsic Jacobian of the map on S1 and ∥ · ∥F is the Frobenius norm.

Note that u = (u1, u2, . . . , ud2)
T has the pointwise constraint u(x) ∈ S2 for any x =

(x1, x2, . . . , xd1)
T ∈ S1, where d1 and d2 are the dimensions of the embedding space for

S1 and S2, respectively. The intrinsic Jacobian can be written in terms of the standard

116

Jacobian as JS1
u = JuΠ∇TuS1 , where Π∇TuS1 = I − nS1n

T
S1

is the projection operator onto
the tangent space of S1. Physically, a map is harmonic when S1 corresponds to a membrane
that is constrained to S2 in elastic equilibrium [45].

Mémoli et al. [114] derived the Euler-Lagrange equations for (6.1) in terms of the
level set representation of S2 under the assumption that S1 is flat and open. The same
calculation is carried out by Moser [109] in terms of the closest point representation of S2.
There, the closest point function is called the nearest point projection and is used to prove
regularity results of harmonic maps [109, Chapter 3].

The Euler-Lagrange equations for (6.1) are ΠTuS2(∆S1u) = 0, where ΠTuS2 is the pro-
jection operator at the point u onto the tangent space of S2. The vector ∆S1u is defined
component-wise, i.e., ∆S1u = (∆S1u1,∆S1u2, . . . ,∆S1ud2)

T . The Euler-Lagrange equations
are solved by evolving the corresponding gradient descent flow

∂u

∂t
= ΠTuS2(∆S1u),

u(x, 0) = u0(x),

JS1
u n|∂S1 = 0,

(6.2)

to steady state. The map u0(x) is a given initial map and the homogeneous Neumann
boundary conditions are justified in [114, Appendix A].

To use CPM to solve (6.2) a corresponding embedding PDE must be constructed first.
As shown in Chapter 2, the term ∆S1u can be replaced by ∆u(cpS1). Furthermore, the
projection operator ΠTuS2 equals the Jacobian of the closest point function, JcpS2

(u), for
u ∈ S2, as mentioned in Section 4.2.7. Applying these replacements gives the embedding
PDE for the gradient descent flow as

∂u

∂t
= JcpS2

(u)(∆u(cpS1)). (6.3)

The closest point function, cpS2 , is itself a projection operator onto S2. King and Ruuth
[72] realized that the computation of JcpS2

can be eliminated by splitting the evolution
of (6.3) into two steps. The first step solves a PDE on S1 alone and the second projects
the solution onto S2 using cpS2 . They prove that this splitting approach gives a first-order
approximation [72, Theorem 1].

To solve (6.3), the embedding PDE on S1 alone,

∂v

∂t
= ∆v(cpS1), (6.4)

117

is evolved for one time step of size ∆t to give vi at each grid node xi ∈ Ω(S1). The second
step projects vi onto S2 via cpS2(vi). The result, uk+1

i ≈ u(xi, t
k+1), approximates the

solution at tk+1 = (k+ 1)∆t. Starting from u0
i = u(cpS1(xi), 0), the steps to advance from

time tk to time tk+1 are given in Algorithm 4.

Algorithm 4: A time step of CPM for harmonic maps.

1. Solve (6.4) using an explicit Euler time-step of size ∆t and CPM appproach of
Ruuth and Merriman [138]:

• Evolution. For xi ∈ Ω(S1) solve
∂v

∂t
(x, t) = ∆v(cpS1(x), t),

v(xi, 0) = uki .

• CP extension. Set v∆t
i = v(cpS1(xi),∆t).

2. Project vi onto S2 by setting uk+1
i = cpS2(v

∆t
i).

6.2 Geodesic Paths via Harmonic Maps

We now seek to compute geodesic paths on general manifolds using the CPM-based har-
monic map computation technique. The core insight was stated by Eells and Lemaire [45]:
if dim(S1) = 1, then harmonic maps are the geodesics of S2. Such a map will yield a closed
or open geodesic on S2 depending on if S1 is closed (e.g., a circle) or open (e.g., a line seg-
ment), respectively. Our approach is therefore to compute a geodesic on the manifold S2

by computing a harmonic map from the 1D line segment S1 = [0, 1] to S2. A line segment
can be used for both open and closed S1 by enforcing Dirichlet BCs for open geodesics or
periodic BCs for closed geodesics.

Our resulting algorithm requires only heat flow on the 1D line segment and the closest
point projection cpS2 onto S2 — it inherits these attractive features from Algorithm 4.
Since King and Ruuth [72] did not consider the geodesic problem, we discuss some intri-
cacies in computing initial paths and stopping criteria in the following subsections.

For the line segment x ∈ S1 = [0, 1], the Laplace-Beltrami operator is simply ∆S1 =
∂2

∂x2
.

Thus, standard 1D finite differences can be used to discretize the heat flow on S1. The

118

initial condition for the gradient descent flow is some path u0(x) ∈ S2. Starting from k = 0,
the geodesic path is computed by iterating the following two steps:

(I) Solve
∂v

∂t
=
∂2v

∂x2
, v(x, 0) = uk(x), for one time step of size ∆t using explicit Euler.

(II) Project v(x,∆t) onto S2 via uk+1(x) = cpS2(v(x,∆t)).

The notation in step (I) means to solve the heat equation independently for each compo-
nent of v. For open geodesics with endpoints p, q ∈ S2, Dirichlet boundary conditions
u(0) = p and u(1) = q are imposed. For closed geodesics, we use periodic boundary con-
ditions u(0) = u(1) on the line segment to avoid complicating step (I) when S1 is curved
(e.g., a circle).

6.2.1 Discretization

For efficiency, the embedding space RdS2 for S2 is taken to be as small as possible, i.e.,
dS2 = dim(S2)+1. For example, dS2 = 3 if S2 is a surface (2D manifold). The line segment
S1 = [0, 1] is discretized using equally spaced grid points xi = ih for i = 0, 1, . . . , N + 1
and h = 1

N+1
. The geodesic path u ∈ S2 ⊆ RdS2 is represented discretely as a polyline

with vertices ui = u(xi).

Step (I) of the algorithm is applied independently for each of the dS2 dimensions of u.
Let u and v denote one of the particular dS2 components of u and v, respectively. Second-
order centred differences are used to discretize ∂2/∂x2. On iteration k, we set vi = uki ,
then apply one step of explicit Euler to the heat equation, with ∆t = 0.4h2:

v∆ti = vi +
∆t

h2
(vi−1 − 2vi + vi+1). (6.5)

Then step (II) couples the dS2 dimensions again for each vertex i of the path via uk+1
i =

cpS2(v
∆t
i).

6.2.2 Stopping Criteria

Different stopping criteria have previously been used for iterative geodesic algorithms.
Perhaps the most obvious stopping criterion would monitor the change in length of the
curve. However, as Mart́ınez et al. [95, Section 3.3.1] discuss, the difference in lengths

119

between consecutive iterations can be small even when the iteration has not converged.
We observe the same behaviour in practice for our method. Instead, we stop iterating if
the movement of each individual vertex falls below a tolerance, i.e.,

max
i
∥uk+1

i − uki ∥ ≤ ϵ, (6.6)

with ϵ = 10−5 for all examples. Our condition draws on the observation that individual
vertices still move when the algorithm is far from converged, even when the length of u
only changes slightly. Therefore, monitoring the motion of each vertex provides a more
effective convergence indicator.

Yuan et al. [193] use the stopping criterion max ∥∇EL∥ ≤ ϵ, where EL is defined below
in (6.11). Our stopping criterion (6.6) is also related to the norm of our energy gradient.
To see this, we first write our algorithm in one step as

uk+1
i = cpS2

(
uki +

∆t

h2
(
uki−1 − 2uki + uki+1

))
. (6.7)

Then Taylor expanding the closest point function about uki gives

uk+1
i ≈ cpS2(u

k
i) + JcpS2

(uk
i)

(
uki−1 − 2uki + uki+1

h2

)
.

Since uki ∈ S2 we have that cpS2(u
k
i) = uki and JcpS2

(uk
i)

= ΠT
uk
i
S2 . Therefore, after

rearranging we have

uk+1
i − uki
∆t

≈ ΠT
uk
i
S2

(
uki−1 − 2uki + uki+1

h2

)
. (6.8)

The term in (6.8) in brackets on the right-hand-side (RHS) approximates ∆S1u. Hence,
comparing with (6.2) we see that the RHS of (6.8) corresponds to −∇EH . Thus ∥uk+1

i −
uki ∥ ≈ ∆t∥∇EH∥.

6.2.3 Initial Path Construction

Since our method applies to general manifold representations via closest point queries,
our path initialization should also. We explore two path initialization algorithms here:
Dijkstra’s algorithm in a computational tube Ω(S2) and rapidly-exploring random trees
(RRT) [78].

120

For the first approach, we construct Ω(S2) using the memory and runtime efficient
implementation detailed in Section 3.2 with rΩ(S2) = 3h/2. Dijkstra’s algorithm is then
used to compute a path between the nearest grid points in Ω(S2) to p and q. We then
replace the grid points yi ∈ Ω(S2) in Dijkstra’s path with their previously computed
cpS2(yi). Finally, we spatially adapt the initial path, splitting and collapsing edges until
all edge midpoints m satisfy ∥m− cpS2(m)∥ ≤ γ.

The blue initial paths in Figure 6.1 are computed with this approach for the torus,
Nefertiti mesh, and DecoTetrahedron level set with γ = 10−3. A grid spacing of h = 0.1
is used for both the torus and DecoTetrahedron and h = 0.01 is used for Nefertiti. The
initial path for the parameterized surface in Figure 6.1 was not constructed using a general
approach. It instead projected a circle onto the surface using cpS2 , which was done just to
show our method can handle closed paths.

Using Dijkstra’s algorithm in Ω(S2) provides generality with respect to the manifold
representation, but it can also be more efficient even for meshes. Dijkstra’s algorithm
in Ω(S2) will be faster if h can be taken large enough compared to the mesh resolution.
However, h must be small enough to give a sufficiently accurate initial path. Furthermore,
the overhead time of the construction of Ω(S2) can also outweigh the benefit of using this
approach as h→ 0. One approach to address this issue may be to use the spatially adaptive
framework in Section 3.4. However, the second approach we explore here, RRT, eliminates
the need for Ω(S2) altogether.

RRT was also used by Yuan et al. [193] for path initialization for manifolds represented
as a level set. An illustration of RRT in R2 is shown in Figure 6.2. A tree T is initialized
with the starting point p and then grown through an iterative process. On each iteration,
a random point xrand is generated and the nearest neighbour xnear in T is found. A new
point xnew is then generated by stepping a distance δ in the direction of xrand from xnear.
The point xnew is added to T if it lies in a valid region of space. Invalid regions of space
can be due to obstacles or physical robot constraints, for example. RRT terminates when
a point in T is within a distance δ to q.

Yuan et al. [193] take their valid region of space to be a half tube of radius rN (S) on
the positive (exterior) side of the level set. They consider S and the boundary of the half
tube to be obstacles. They then use the standard RRT method in the half tube. A final
post-processing step projects the path generated in the half tube onto S by computing the
closest points of the path vertices. Figure 6.3 (left) gives an example path computed using
this implementation of RRT on the sphere (except with the full tube instead of just the
positive half). We make some changes to the implementation of RRT of Yuan et al. [193],
as discussed below, which allows for more general manifolds and decreases the number of

121

p

xnear

xnew

xrand

δ

Figure 6.2: One iteration of the RRT algorithm where xnew is connected to xnear in the
tree T originally grown from the start point p. The point xnew is generated by moving a
distance δ from xnear in the direction of xrand.

iterations without drastically increasing error.

Algorithm 5 summarizes our RRT implementation (note we abbreviate cpS2(xtext) as
cptext). We take the full tubeN (S2) of radius rN (S2) to be the valid region, which allows the
algorithm to be applicable to open and/or unorientable manifolds. First, a random point
in the valid region must be generated. A random point xrand is generated in a ball of radius
R that completely encloses S2, but is not necessarily in the valid region N (S2). Therefore,
a point x is created by moving a random distance r ∈ [−rN (S2), rN (S2)] from the associated
projected point cprand of xrand in the manifold normal direction, which ensures x ∈ N (S2).
Instead of constructing the path in N (S2), we add closest points to T on each iteration,
which keeps the path on S2. The nearest neighbour step, therefore, finds the point cpnear

already added to T that is the nearest neighbour of x. The point xnew is still constructed
as in the original RRT algorithm by moving a δ distance from cpnear in the direction of
x, but if xnew is valid (i.e., xnew ∈ N (S2)), then cpnew is added to T instead of xnew. In
short, Yuan et al. [193] perform RRT in the half-tube and project onto S afterwards. We
instead use the full tube to handle general manifolds, and incorporate projections on S
during each iterative step of the algorithm for greater efficiency. Figure 6.3 (right) shows
an example path computed using our RRT implementation on the sphere.

Table 6.1 compares the number of iterations and errors when constructing initial paths
with the implementation of RRT of Yuan et al. [193] (but on the full tube) and ours. The
test is performed on the unit sphere for 150 unique pairs of p and q. The path is computed
100 times for each of the 150 pairs since RRT is a random algorithm. We used δ = 0.1,
rN (S2) = 0.25, and R = 2. The maximum number of iterations of our RRT implementation

122

Algorithm 5: Rapidly-exploring random trees on manifold S
Given path start and end points p, q
Given max iterations K, step distance δ, tube radius rN (S), enclosing radius R

Initialize tree T .init(p)
while k < K do

k ← k + 1
Set xrand to a random point in ball of radius R enclosing S
x← cprand + r (xrand − cprand) /∥xrand − cprand∥, for random r ∈ [−rN (S), rN (S)]
cpnear ← NearestNeighbour(T ,x)
xnew ← cpnear + δ (x− cpnear)
if ∥xnew − cpnew∥ < rN (S) then
T .AddVertex(cpnew)
T .AddEdge(cpnear, cpnew)
if ∥cpnew − q∥ ≤ δ then

return T
end

end

end

123

Figure 6.3: An initial path (blue) between the red points computed using RRT as discussed
by Yuan et al. [193] (left) and our improved RRT implementation (right). The full tree T
computed by each algorithm is shown in black. Note that Yuan et al. [193] projects the
final blue path onto the surface with cpS , but the final post-projection path is not shown
here.

over all tests is 67% of the standard RRT with nearly the same error. The error in the
path is defined as

Error =
1

N

N∑
i=1

∥ui − cpP(ui)∥ , (6.9)

where cpP is the closest point function of the exact geodesic through p and q. For a sphere,
the exact geodesic is the great circle intersecting p and q. Our mean number of iterations
over all tests is 85% of the standard RRT, but the median has a 2% increase. There is a
slight increase in error for the mean and median, but this error is not detrimental since
the resulting path is only used to initialize our algorithm.

6.3 Comparison to Yuan et al. [193]

One variant of the method of Yuan et al. is similar to ours. However, their perspective is
based on the length minimization property of geodesics. For a continuously differentiable

124

Table 6.1: Iterations and errors for RRT path initialization on the unit sphere.

Method Max Min Mean Median

Iterations
Yuan et al. 50,363 2 3221 1217
Ours 33,570 2 2740 1240

Errors
Yuan et al. 0.7477 0.0044 0.2157 0.1832
Ours 0.7476 0.0045 0.2281 0.1931

curve γ : [0, 1]→ S2 the length of the curve is given by∫ 1

0

∥γ′(t)∥ dt. (6.10)

Yuan et al. instead consider minimizing the energy functional

EL(γ) =

∫ 1

0

H(∥γ′(t)∥) dt, (6.11)

since it has the same critical points as the length functional (6.10). The function H(s)
must be convex and satisfy H ′(s) > 0 and H ′′(s) ≥ 0. Yuan et al. minimize EL(γ) using
LBFGS [135] and show (albeit with a simple example of shortening an “S”-shaped curve
in the plane) that H(s) = s2 and H(s) = es

2− 1 require far fewer iterations than H(s) = s
(which corresponds to the actual length functional (6.10)). They chose H(s) = es

2 − 1
since slightly fewer iterations were needed compared to H(s) = s2. In our comparisons in
Section 6.4 we use H(s) = es

2 − 1 for the Yuan et al. [193] method also.

In the discrete setting, there are subtle differences between our method and theirs with
H(s) = s2. For this specific case, the ∇EL used in LBFGS is a scalar multiple of the finite
difference scheme we use for ∂2/∂x2 in (6.5). The ∂2/∂x2 term is related to the gradient
of EH , but only the specific combination in steps (I)-(II) give a first-order consistent
discretization of the gradient descent flow (see King and Ruuth [72, Section 3.2] for the
proof).

Importantly, our approach does not require computing and applying the projection
operator ΠTuS2 . Yuan et al. use ΠTuS2 to project ∇EL onto the tangent space of S2;
otherwise their minimization does not converge. Even with these projected gradients their
method can produce geodesics that are not strictly in S2. Therefore, after each iteration,
they put the vertices of their path on S2 by computing closest points. They give no
theoretical justification for using ΠTuS2(∇EL) or cpS2 , whereas, our approach has firm
theoretical justification for not needing ΠTuS2 and computing cpS2 in step (II).

125

6.4 Numerical Results

Our approach to compute geodesic paths is compared with the methods of Yuan et al. [193]
and Sharp and Crane [152] in this section. We first focus on just the runtime required to
shorten an initial path to a geodesic on different surfaces provided as meshes. Then a more
thorough comparison of the full pipeline to compute geodesic paths is done on a single
surface, the unit sphere. The closest points to the meshes are computed using fcpw [139].
The CPU version of fcpw is used, but its GPU counterpart may be able to provide more
efficient closest point computation for meshes. Enoki vectorization [63] within fcpw was
also not used since experiments were performed on a Macbook Air with M1 chip, which is
not supported by Enoki.

6.4.1 Path Shortening Comparison

The same initial path is used for all three methods computed using Dijkstra’s algorithm
directly on a mesh. Six different meshes are used in this comparison: Blub the fish, a higher
resolution fish, a Möbius strip, a sphere, a dragon, and a Buddha statue. The meshes have
approximately 10K, 173K, 328K, 655K, 3.6M, 5M vertices, respectively. Roughly 2000,
1000, 667, 500, 400, and 333 different paths are computed between vertices p and q on the
meshes, respectively.

Figure 6.4 (top row) gives histograms of the shortening time normalized with respect
to Dijkstra’s algorithm runtime (left) or the shortening time of our method (right). From
Figure 6.4 (top left), we see that our method and that of Yuan et al. [193] take longer
than Dijkstra’s algorithm for most of the geodesics computed. There is, however, a cluster
of geodesics computed by our algorithm that require a similar amount of time to the
method of Sharp and Crane [152], which is faster than Dijkstra’s algorithm. A more direct
comparison of our method to the other two is provided in Figure 6.4 (top right) where the
runtimes of Yuan et al. [193] and Sharp and Crane [152] are normalized by the runtime of
our method. The method of Yuan et al. [193] can be up to approximately 1000× slower
than ours, but never faster. In contrast, the method of Sharp and Crane [152] is always
faster by at most approximately 500×.

Avoiding computation of ΠTuS2 is the main reason we enjoy faster runtimes than the
Yuan et al. [193] method. This result is significant since their method was faster than 9
others they compared against (only Dijkstra’s algorithm was faster, but it does not provide
a smooth path due to its restriction to edges). Yuan et al. [193] need the normal vectors of
each face in the mesh that the polyline goes through during the iterations to apply ΠTuS2 .

126

Ours Yuan et al. [193] Sharp and Crane [152]

10310210110010−110−210−310−4
0

200

400

600

800

#
p
at
h
s

runtime normalized w.r.t. Dijkstra’s

10310210110010−110−210−3
0

400

800

1200

1600

#
p
at
h
s

runtime normalized w.r.t. Ours

10310210110010−110−210−310−4
0

225

450

675

900

#
p
at
h
s

runtime normalized w.r.t. Dijkstra’s

10310210110010−110−2
0

350

700

1050

1400

#
p
at
h
s

runtime normalized w.r.t. Ours

Figure 6.4: Histograms of path shortening timings when computing geodesics paths with
6 different meshes. Top row: All algorithms use the same initial path from Dijkstra’s
algorithm. Bottom row: The initial path is coarsened for our method and the method of
Yuan et al. [193]. Left column: Shortening runtime normalized by the runtime of Dijkstra’s
algorithm for path initialization. Right column: Shortening runtimes normalized by the
shortening runtime of our method.

127

In our implementation of their approach, we compute the per-face normals for the whole
mesh as a preprocessing step. If many geodesic paths are to be computed, this approach
amortizes the cost of the face normal computation. For the meshes used in our tests the
cost of normal computation is 0.07, 1.3, 3.5, 4.9, 29.2, and 35.9 seconds for the fish, higher
resolution fish, Möbius strip, sphere, dragon, and Buddha statue, respectively. The cost of
computing the normal vectors can therefore be a large bottleneck for the Yuan et al. [193]
method depending on how many paths are to be computed and the number of faces in the
mesh. If only one geodesic path is needed, it would be possible to speed up the normal
computation by only computing on faces in the mesh that the polyline travels through
during minimization.

Note also that computing the per-face normals to be used with the Yuan et al. [193]
method does not generalize to other manifold representations. Representation specific
methods could be used, but this complicates the implementation. A single implementation
for the normal vectors could be accomplished using CPM (see [138, Appendix A] and/or
Section 4.2.7), but the added cost of constructing a computational tube around the man-
ifold and interpolating the normals may be disadvantageous. One could instead compute
the normal when the polyline path vertices are put back on the manifold via the closest
point computation. However, this will be inaccurate when a path vertex is close to the
manifold, since the normal direction vector will have a small norm. Our method does not
need normal vectors, which eliminates this extra computation.

The method of Sharp and Crane [152] is guaranteed to return a geodesic polyline
consisting of vertices and edges that all lie strictly within the triangle mesh surface. For
some applications this is an important feature, however, this is not always necessary. Our
algorithm and that of Yuan et al. [193] only guarantee that the polyline vertices are in
the mesh (while the edges may not be), since they are designed for general manifold
representations where S is not necessarily piecewise planar. We can therefore coarsen the
initial path polyline to speed up our algorithms. Figure 6.4 (bottom row) shows histograms
for the same tests above (top row), but with edges of the polyline collapsed if the midpoint
of the resulting edge is still a distance less than 10−3 away from S. All methods are now
faster or about the same runtime as Dijkstra’s algorithm, see Figure 6.4 (bottom left),
except some of the geodesics computed by the Yuan et al. [193] method.

Figure 6.4 (bottom right) shows that our method has roughly the same speedup over
the Yuan et al. [193] method with the non-coarsened initial path (but due to the Yuan
et al. [193] method converging less often, discussed below, there is a larger cluster above
100× slower than ours). The figure also shows that our method with the coarsened initial
path can now be faster than the method of Sharp and Crane [152] and is always less than
100× slower.

128

Table 6.2: Path differences between the three methods for all paths computed in Figure 6.4.

Methods Compared Initial Path Max Mean Median

Ours & Sharp and Crane [152]
Dijkstra’s 0.3012 0.0177 0.0033
Coarsened 0.1460 0.0027 0.0011

Ours & Yuan et al. [193]
Dijkstra’s 0.0752 0.0062 0.0018
Coarsened 0.0589 0.0007 0.0002

Yuan et al. [193] & Sharp and Crane [152]
Dijkstra’s 0.2743 0.0138 0.0018
Coarsened 0.1456 0.0025 0.0009

Interestingly, the difference between paths computed by all three algorithms decreases
when the initial path is coarsened. To illustrate this effect, we compute the path difference
using (6.9), but with the exact geodesic P replaced by one of the two polyline paths
being compared. Table 6.2 gives the path differences between all pairs of methods for the
Dijkstra’s initial path and the coarsened version. As expected, the difference between our
paths and the paths of Yuan et al. [193] is smaller than that of those methods compared
with the method of Sharp and Crane [152]. The mean and median differences are quite
small, but the max difference can become quite large, especially for ours and Yuan et al.
[193] compared to Sharp and Crane [152].

Another way our method shows superior runtimes compared to Yuan et al. [193] is due
to superior robustness. A maximum of 50,000 iterations was used for both methods. With
the initial Dijkstra’s path, the method of Yuan et al. [193] converged for 4102/4690 = 87.5%
of the tests before the max iteration count was reached, whereas, ours converged for all
4690 tests. With the coarsened initial path (same initial path for both), the method of
Yuan et al. [193] only converged for 2636/4690 = 56.2% of the tests and ours converged
for 4681/4690 = 99.8% of the tests. These tests that failed to converge are responsible for
the cluster of tests towards the right of the histograms in Figure 6.4 for the Yuan et al.
[193] method.

A final aspect we examined is how the shortening time scales for each method as the
number of points in the polyline path increases. Figure 6.5 plots the shortening time versus
the number of points in the (not coarsened) Dijkstra’s initial path. The tests that did not
converge with the Yuan et al. [193] method are removed; they would otherwise skew the
scaling result since all failed tests took the maximum 50,000 iterations. A line of best
fit is computed for each method, which shows that the method of Sharp and Crane [152]
scales the best with a slope of 2.8 × 10−5. Our method scales about 26 times worse than
Sharp and Crane [152], but the method of Yuan et al. [193] is much worse by a factor of
about 360. Figure 6.5 verifies the importance of reducing the number of points in the path

129

to speed up our method. It would be interesting to explore other adaptive strategies to
improve performance in future work.

6.4.2 Full Pipeline Comparison

The runtime to shorten the initial path to a geodesic is not always the bottleneck of
the overall geodesic computation. Of course, if geodesic computation is part of a larger
application pipeline that provides the initial path, only the shortening time needs to be
considered. However, as pointed out by Sharp and Crane [152, Section 5.2.1], the cost of
shortening the initial path for most methods they examined was faster than constructing
the initial path with Dijkstra’s algorithm. We have also shown in Figure 6.4 that our
method and that of Yuan et al. [193] (when convergent) can run faster than Dijkstra’s
algorithm (especially with a coarsened initial path).

In practice, features such as accuracy, robustness, and types of input/output are more
important. Our method is more robust than the method of Yuan et al. [193]. Our method
also allows more general representations of S to be input than any other method (including
Yuan et al. [193]) by only requiring closest point queries. In this section, we also explore
the runtime cost of the full pipeline needed to compute geodesics.

Other runtime costs in geodesic computation are the initial path construction and the
setup of the discrete representation. Since we are not restricted to a mesh, we can use other
approaches instead of Dijkstra’s algorithm for path initialization. A mesh is usually saved
as a list of vertices and faces which must be read into memory before computation proceeds.
Whereas, a closest point function can be represented directly in the code in different ways,
e.g., analytically or as an optimization problem (see Appendix A). Obviously, the cost of
the discrete setup will be the same for our method and mesh-based methods if the closest
point function is computed with a mesh. In addition, the discrete setup runtime is less
important if geodesics are computed as part of a larger application pipeline. The cost of
the discrete setup can also be amortized if many geodesic paths are required on the same
S.

Figure 6.6 compares our method using RRT path initialization against Sharp and Crane
[152] using Dijkstra’s path initialization on the unit sphere. Different resolution meshes
are used with the method of Sharp and Crane [152] to show the resolution dependence.
The different resolution meshes of the sphere are constructed with 4:1 subdivision of a
base mesh (with 162 vertices) and projecting new vertices onto the sphere using cpS . Our
method uses exact closest point queries for the sphere (which also requires a small but
nonzero discrete setup cost).

130

1800150012009006003000

0

0.6

1.2

1.8

2.4

ru
n
ti
m
e
(s
)

path vertices

Slop
e =

7.3
× 10

−4

1800150012009006003000

0

9

18

27

36

ru
n
ti
m
e
(s
)

path vertices

Slop
e =

1.0
× 10

−2

1800150012009006003000

0

0.1

0.2

0.3

0.4

ru
n
ti
m
e
(s
)

path vertices

Slope = 2.8× 10−
5

Ours

Yuan et al. [193]

Sharp and Crane [152]

Figure 6.5: The runtime scaling of the three methods with respect to the number of vertices
in the path for the paths computed in Figure 6.4 (top row).

131

Table 6.3: Path error for all the geodesic paths computed for Figure 6.6.

Method Max Mean Median
Ours 0.0645 0.0057 0.0028
Base Mesh 0.1517 0.0209 0.0122
Subdivide 5 0.0109 0.0012 0.0003
Subdivide 9 0.0108 0.0012 0.0003
Subdivide 10 0.0108 0.0011 0.0003

Figure 6.6 (top row) gives histograms for the shortening runtime normalized by the
path initialization runtime (left) and by our method’s runtime (right). The histogram for
the shortening runtime normalized by the path initialization runtime (top row, left) has a
wider spread for our method compared to Sharp and Crane [152]. Two correlated factors
are responsible for this. First, the RRT algorithm has a wide range of iteration counts (see
Table 6.1). Second, the wide range of RRT iterations directly corresponds to a wide range
in the number of points in the initial path. As shown in Figure 6.5, our method scales
with the number of points in the path. Figure 6.6 (top row, right) shows that, for finer
resolution meshes, our method can be up to 10, 000× faster than Sharp and Crane [152].

Figure 6.6 (bottom row) gives histograms for the shortening + path initialization run-
time (left) and total runtime including the discrete setup (right), both normalized by our
method’s runtime. Our method can be up to approximately 100, 000× faster than Sharp
and Crane [152] when considering the path initialization runtime also (left). The his-
tograms become more skewed to the right when the total runtime is considered (right),
corresponding to our method being faster more often in this scenario.

Table 6.3 gives the max, mean, and median error over all the tests from Figure 6.6
computed using (6.9). Our method has higher errors than Sharp and Crane [152] with
finer resolution meshes (but lower errors than with the base resolution mesh), but only by
a factor of about 5-10.

6.5 Summary and Future Work

An algorithm to compute geodesics paths on general manifold representations was pre-
sented in this chapter. We can handle more manifold representations than any previous
method, since only closest point queries to the manifold are required. We compared our
method with two SOTA methods: the work of Yuan et al. [193] (SOTA for representation

132

Ours Base Mesh Subdivide 5 Subdivide 9 Subdivide 10

10310210110010−110−210−310−4
0

500

1000

1500

2000

#
p
a
th
s

runtime normalized by path initialization

Shorten

10610410210010−210−410−6
0

200

400

600

800

#
p
at
h
s

runtime normalized w.r.t. Ours

Shorten

10610410210010−210−410−6
0

125

250

375

500

#
p
at
h
s

runtime normalized w.r.t. Ours

Shorten + Initialize

10610410210010−210−4
0

150

300

450

600

#
p
at
h
s

runtime normalized w.r.t. Ours

Total

Figure 6.6: Runtime comparison of our method and the method of Sharp and Crane [152]
for the full pipeline to compute geodesics.

133

generality) and Sharp and Crane [152] (SOTA for path shortening runtime on triangle
meshes). We showed that our method is more robust and faster (up to 1000×) than the
method of Yuan et al. [193]. When initializing the path using Dijkstra’s algorithm our
method can be up to 500× slower than the method of Sharp and Crane [152]. However,
when using the RRT method for path initialization our approach can be up to 100, 000×
faster than the method of Sharp and Crane [152] on high-resolution meshes.

Our algorithm is an ideal candidate for parallelization. The closest point computation
in step (II) of the algorithm can be performed independently for each vertex of the polyline
path, while step (I) only requires data from the two neighbouring vertices. When the path
contains a large number of vertices, parallelizing our method would allow superior runtime
scaling compared to the SOTA.

Further improvement in runtime of our method can be achieved by optimizing the RRT
path initialization implementation. Currently, it is inefficient since a brute-force nearest
neighbour search is used (checking all points in the tree T). However, incremental distance
algorithms could speed up the nearest neighbour search, as mentioned in [77, Section 2].
There have also been many extensions of RRT that could be explored to provide further
improvement of our approach [176, 189].

134

Chapter 7

Future Work for CPM

Previous to the work in this thesis, the representation of objects using closest points showed
great potential in terms of generality. Closest points can be computed for a vast array
of discrete object representations and these objects can have diverse characteristics, i.e.,
manifold or nonmanifold, open or closed, orientable or not, and of any codimension or even
mixed codimension. The ability to solve general classes of PDEs via CPM further added to
the potential of representing objects with closest points. However, limitations existed that
made closest point representations seem impractical when applied to problems in geometry
processing (and computer graphics in general) due to CPM’s inability to handle interior
BCs, and the fine level of detail objects exhibit that we are accustomed to in this field.

This thesis focused on multiple ways of addressing these limitations, which arise mainly
due to the use of an embedding space. However, the use of the embedding space is vital; the
concept of closest points exists only if there is space surrounding the object. Furthermore,
the simplicity of CPM is due to the ability to solve PDEs on curved objects using Cartesian
numerical methods in the embedding space. Fortunately, only a relatively small portion of
the embedding space Rd is required, i.e., a tubular neighbourhood of S.

First, to handle objects with fine details, we showed in Chapter 3 that the grid-based
CPM theoretically scales with dim(S) (rather than d) and developed a technique to con-
struct the computational tube Ω(S) with this optimal scaling in memory and runtime. We
also created a spatial adaptivity framework to allow the tube radius to vary over S and
concentrate the DOFs where they are needed most. In Chapter 4, we devised an accu-
rate and general approach to handle interior BCs with CPM, which allowed us to handle
applications from geometry processing that were previously impossible. Our further devel-
opment of CPM with a Monte Carlo method (Chapter 5) provided common advantages of

135

volumetric Monte Carlo methods, such as view-dependent solutions of PDEs. (Note that
Monte Carlo methods are not a “silver bullet” since they come with tradeoffs compared
to grid-based methods, which also exist for us.) Finally, in Chapter 6, we introduced a
method to compute geodesic paths that only requires closest point queries (but, unlike
earlier chapters, does not involve solving PDEs on curved objects). In this chapter, we
discuss other outstanding limitations and provide some insight into possible remedies.

7.1 Spatial Grid Resolution

Existing CPM theory assumes a unique closest point function cpS . As discussed in Sec-
tion 2.1, cpS is unique for x in a tubular neighbourhood N (S) of constant (uniform) tube
radius rN (S) satisfying rN (S) < reach(S). Therefore, in the discrete setting, the computa-
tional tube-radius rΩ(S) must be less than reach(S) also. Rearranging (3.4) means h must
satisfy

h <
reach(S)√

(d− 1)
(
p+1
2

)2
+
(
q + p+1

2

)2
to ensure a unique cpS on Ω(S). However, in practice CPM can often be used successfully
with larger h, depending on the PDE to be solved and the accuracy requirements of the
application.

In many graphics applications the visual appearance is paramount. Consider a diffusion
curves example on a dragon [171]. Figure 7.1 shows the resultant surface colouring at
different grid resolutions. Artifacts can be observed for h = 0.0125: unintended blending of
blue and red on the head yields purple, while the zoomed-in dragon scale incorrectly shows
hints of blue appearing in a red region. For h = 0.003125 (and arguably h = 0.00625) the
result has converged to a visually acceptable, artifact-free result. However, the h required
to give a unique cpS for the dragon is h < 1.28× 10−6. This assumes no thin bottlenecks
exist, i.e., reach(S) is computed based on only principal curvatures (computed directly on
the mesh using geometry-central [154]). Instead, one could estimate reach(S) using the
medial axis approximation discussed in Section 5.2.1. Ultimately, an h based on an estimate
of reach(S) can be unnecessarily restrictive, since Figure 7.1 shows that h≫ reach(S) still
produces satisfactory results.

Therefore, h has always been empirically determined for practical applications of CPM,
but this is a limitation that costs the user time. A priori determination of a “correct”
grid spacing h is an open challenge: it will require knowledge about the specific PDE to
be solved, the manifold it is to be solved on, and the accuracy requirements (perceptual,

136

�G = 0.0125h = 0.0125

�G = 0.00625h = 0.00625 �G = 0.003125h = 0.003125

Figure 7.1: Results for three grid resolutions used to solve a diffusion curves problem to
colour the surface of a dragon. The resolution is illustrated by a small block of grid cells
(best viewed by zooming). The cpS are computed from a triangulation, while the cpC are
from polylines.

137

numerical, etc.) of the user. In general, a priori error estimation has been rare in computer
graphics applications. A notable exception is the p-refinement FEM scheme of Schneider
et al. [144], which uses an a priori error estimate based on the geometry of the (volumetric)
domain.

Error estimates would also be useful for our spatial adaptivity framework (Section 3.4)
to determine hm for each subset Ω(Sm) of the adaptive computational tube. It would
be interesting to explore whether the uniqueness requirement of cpS can be relaxed for
adaptive tubes as well, i.e., if rΩ(Sm) < LFS(cpSm(xi)) can be violated and still produce
satisfactory results.

In scenarios where rΩ(S) < reach(S) is violated, neighbouring grid points can receive
data through the CP extension from geodesically distant parts of S (when the edge between
neighbours intersects with med(S), see Figure 7.2 (left)). Data being similar on these
geodesically distant parts of S is one possible explanation for why rΩ(S) < reach(S) can be
violated. Exploring the use of duplicate DOFs on either side of the medial axis could ensure
data is CP extended from the correct part of S (similar to how Chapter 4 distinguishes
different sides of an IBC). This would result in a nonmanifold grid similar to the work of
Mitchell et al. [105] and Chuang [27]. However, more than just the closest points would be
necessary; the points of intersection pi,j between rays emanating from xi that intersect S
orthogonally would be needed (see Figure 7.2 (right)). This is a generalization of closest
points since the pi,j that gives the minimum distance over all j between xi and pi,j is the
closest point, i.e., cpS(xi) = pi,j⋆ with j⋆ = argmin

j
∥xi − pi,j∥.

7.2 Additional PDEs, CPM Convergence, and Mani-

fold Smoothness

We primarily focused on Poisson and diffusion problems, but the grid-based CPM has been
applied to numerous other PDEs (see Section 2). In principle, our approach to allow effi-
cient scaling of CPM to larger problems (Chapter 3) and our IBC enforcement (Chapter 4)
should readily extend to those other PDEs. This was confirmed for our IBC treatment with
reaction-diffusion equations in Section 4.4.5. Extending CPM to approximate previously
unexplored operators, such as the relative Dirac operator [81] or the connection Laplacian
[155, 47], would allow other geometry processing applications to benefit from CPM. Fur-
thermore, our Monte Carlo CPM in Chapter 5 is only applicable to the Poisson equation
(and some other closely related PDEs, e.g., screened-Poisson equation, using generaliza-
tions detailed in [164]) with Dirichlet BCs. This is not an inherent limitation of our method

138

xi

S

pi,1

pi,2

Figure 7.2: Left: When rΩ(S) < reach(S) is violated, neighbouring grid points (black
points) can be assigned data from their closest points (white) that are far apart in terms of
geodesic distance. Right: Two segments (green) of the rays starting from xi that intersect
S (blue) orthogonally. The points of intersection pi,1 and pi,2 lie at the intersection of the
green and blue curves.

but a limitation of (volumetric) Monte Carlo methods in general; different Monte Carlo
methods must be developed for different classes of PDEs. For example, the walk-on-stars
method [142] extends the (volumetric) walk-on-spheres method [110] to handle Neumann
BCs.

Currently, convergence of the numerical scheme for CPM has not been proven for the
first three variants detailed in Sections 2.2.1–2.2.3. However, in practice, those variants of
CPM do indeed converge. Chen and Macdonald [24] provide proof for the convergence of
the fourth variant (Section 2.2.4), but only for closed curves embedded in 2D. They remark
that their proof does not extend to even 3D. A complete convergence theory for all CPM
variants with any type of manifold embedded in any dimension is a difficult but important
problem for future work.

Most CPM work and theory is based on smooth manifolds. However, WENO interpo-
lation has been used to improve the grid-based CPM for nonsmooth surfaces (e.g., surfaces
with sharp features) [87, 7]. Sharp features have zero local feature size, so they can never
be fully resolved, even as h→ 0. The CP extension can cause neighbouring grid points in
Ω(S) to be assigned data from parts of S that are geodesically distant, i.e., from either side
of the sharp feature. The ability of WENO interpolation to adapt its stencil allows data
from the correct side of the sharp feature to be used more often. Cheung et al. [25] used
duplicated DOFs (similar to our IBC work in Chapter 4) near the sharp feature with a
radial-basis function discretization of CPM. However, such discretizations can suffer from

139

Nathan King

ill-conditioned linear systems. Therefore, it would be interesting to instead explore the
alteration of stencils (similar to our IBC approach in Chapter 4) for the grid-based CPM
near sharp features to use data from the correct side of the sharp feature. In this context,
the BC curve C would instead be the sharp feature and the PDE is still imposed on C
instead of a BC.

The theoretical restriction of smoothness also applies to the curve C. Therefore, our IBC
approach is theoretically restricted to curves without kinks or intersections. In practice, we
are still able to obtain the expected result when C has sharp features or intersections, e.g.,
Figure 4.9 involves many intersecting curves (in the band of the headdress) that also create
sharp corners. Similarly, CPM gives expected results in practice for mixed-codimensional
objects as seen in Figure 4.10 where sharp features are present when differing codimensional
pieces meet (one does however observe a decrease in the empirical convergence order). The
development of a sound theoretical understanding of CPM’s behaviour near sharp features
and intersections is interesting future work.

7.3 Neural Representation

Using neural networks to encode the closest point representation of objects would provide
a non-discrete (continuous everywhere except on the medial axis) formulation that further
broadens research directions. There has been much recent work involving neural geometry
processing with different representations, e.g., meshes [184], voxelizations [180] and signed
distance fields (SDFs) [190].

A neural closest point representation is well suited for many geometry processing tasks,
which alleviates the need to convert a neural representation into a discrete representation
(e.g., a mesh) to apply classical geometry processing algorithms. Geometric quantities of
the object, such as curvatures, normals, tangent spaces, first and second fundamental forms,
are easily computed using automatic differentiation of neural closest point representations.
The gradient, divergence, Laplace-Beltrami operator, and other higher-order differential
operators of scalar/vector fields on the neural closest point representation can be computed
using ideas from CPM. This would provide the ability to solve PDEs in a discretization-free
manner.

Similar recent work by Williamson and Mitra [185] used a spherical embedding of
genus-0 surfaces, called spherical neural surfaces (SNSs). They map genus-0 surfaces to
the unit sphere and train a multi-layer perceptron to give a continuous representation of
the spherical parametrization. They show how to compute geometric quantities such as

140

curvatures, normals, and first and second fundamental forms, with SNSs. Furthermore, the
computation of surface gradients, surface divergence, and the Laplace-Beltrami operator
of scalar/vector fields defined on SNSs is shown.

The approach of Williamson and Mitra [185] is restricted to closed, orientable, genus-0
manifolds embedded in 3D. They mainly show the construction of an SNS from a triangle
mesh but also show one example from a neural SDF (albeit still utilizing an intermediate
mesh). The use of a closest point representation instead would allow much more general
objects while retaining the ability to compute all the geometric quantities and differential
operators.

Further interesting directions of future work involving the use of a neural closest point
representation include a wide range of applications such as rendering neural closest point
representations directly, deforming them, segmenting or classifying shapes, etc.

7.4 Conclusion

Realistic and complex digital objects are commonplace in our daily experience. They are
created in numerous ways, e.g., from data captured of real-world objects, manually with
the aid of 3D modelling software, and using generative AI. Due to the many ways objects
are created, vastly different discrete representations exist, which causes wasted efforts in
the research and development community; time would be better spent creating novel and
fundamental methods than adapting existing methods to be compatible with another object
representation.

Therefore, it is paramount that a single representation is found that has the ability
to represent any object we desire and can be used to accomplish any application. We
believe that the closest point representation has the potential to satisfy these requirements.
The closest point representation can handle objects that are embedded in any dimension.
Even though we focused on curved objects embedded in a higher-dimensional space, solid
objects with irregular boundaries can also be represented with codimension zero. Even
mixed-codimensional objects can be represented with closest points, such as a 2D balloon
surface tied to a 1D string curve. The objects can also be manifold or nonmanifold, open
or closed, and orientable or not.

Also, to our knowledge, no other single representation is simultaneously implicit and
explicit, which is an attractive feature for application versatility. Poursaeed et al. [134]
developed a neural network that simultaneously outputs an implicit and explicit surface

141

representation. They showed that coupling their implicit and explicit representations pro-
vided more accurate implicit occupancy functions and produced smoother explicit surfaces
with more accurate normals. The closest point representation circumvents the need for
their consistency loss term that aligns the explicit representation with the implicit one.
Moreover, the closest point implicit representation, x − cpS(x) = 0, contains more infor-
mation because it is vector-valued (the common scalar-valued implicit representation is
also readily available as ∥x− cpS(x)∥ = 0, although it is unsigned).

From the above, it seems the closest point representation satisfies the goal of finding
a representation that can handle any object of interest. The implicit and explicit nature
of the closest point representation increases the likelihood that it can be used in any
application. We will have to wait for future research to know if this latter requirement
is satisfied, but we began showing in this thesis that the closest point representation can
indeed handle many PDE-based geometry processing applications when augmented with
the closest point method. Our work is also directly applicable in other areas of computer
graphics and in other fields that require solving PDEs.

CPM is a relatively young method compared to other methods that solve PDEs. For
example, the finite element method can be traced back to 1941 with the work of Hrennikoff
[59] (see [82] for a historical overview of its development) and the walk-on-spheres Monte
Carlo method was introduced in 1956 by Muller [110]. In contrast, the foundational CPM
paper of Ruuth and Merriman [138] was only published in 2008, more than 50 years later.
In this chapter, we outlined a partial roadmap of the significant untapped potential of
closest point representations and CPM; we hope that others in the computer graphics
community will join us in exploring it.

142

References

[1] Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo,
and Larry Wasserman. Estimating the reach of a manifold. Electronic Journal of
Statistics, 13(1):1359–1399, 2019.

[2] David Adalsteinsson and James A Sethian. A fast level set method for propagating
interfaces. Journal of Computational Physics, 118(2):269–277, 1995.

[3] Nora Al-Badri and Jan Nikolai Nelles. Nefertiti, 2024. Downloaded from https:

//cs.cmu.edu/~kmcrane/Projects/ModelRepository, original source https://

nefertitihack.alloversky.com/.

[4] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete &
Computational Geometry, 22(4):481–504, 1999. doi: 10.1007/PL00009475. URL
https://doi.org/10.1007/PL00009475.

[5] Reynaldo J. Arteaga and Steven J. Ruuth. Laplace-Beltrami spectra for shape com-
parison of surfaces in 3D using the closest point method. In 2015 IEEE International
Conference on Image Processing (ICIP), pages 4511–4515. IEEE, 2015.

[6] S. Auer and R. Westermann. A semi-Lagrangian closest point method for deforming
surfaces. Computer Graphics Forum, 32(7):207–214, 2013. doi: https://doi.org/10.
1111/cgf.12228.

[7] S. Auer, C. B. Macdonald, M. Treib, J. Schneider, and R. Westermann. Real-time
fluid effects on surfaces using the closest point method. Computer Graphics Forum,
31(6):1909–1923, 2012. doi: https://doi.org/10.1111/j.1467-8659.2012.03071.x.

[8] Stefan Auer and Rüdiger Westermann. Direct Contouring of Implicit Closest Point
Surfaces. In M.-A. Otaduy and O. Sorkine, editors, Eurographics 2013 - Short Papers.
The Eurographics Association, 2013. doi: /10.2312/conf/EG2013/short/001-004.

143

https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://nefertitihack.alloversky.com/
https://nefertitihack.alloversky.com/
https://doi.org/10.1007/PL00009475

[9] Autodesk. AutoCAD, URL accessed April 2025. https://www.autodesk.com/

ca-en/products/autocad/overview.

[10] Autodesk. Maya, URL accessed April 2025. https://www.autodesk.com/ca-en/

products/maya/overview.

[11] Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. Preserving ge-
ometry and topology for fluid flows with thin obstacles and narrow gaps. ACM
Transactions on Graphics (TOG), 35(4):1–12, 2016.

[12] Seungbae Bang, Kirill Serkh, Oded Stein, and Alec Jacobson. An adaptive fast-
multipole-accelerated hybrid boundary integral equation method for accurate diffu-
sion curves. ACM Transactions on Graphics (TOG), 42(6), December 2023. ISSN
0730-0301. doi: 10.1145/3618374. URL https://doi.org/10.1145/3618374.

[13] Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. Levin, and Alec Jacobson.
Fast winding numbers for soups and clouds. ACM Transactions on Graphics (TOG),
37(4):1–12, 2018.

[14] Sören Bartels. Stability and convergence of finite-element approximation schemes for
harmonic maps. SIAM Journal on Numerical Analysis, 43(1):220–238, 2005.

[15] Jacob Bedrossian, James H. Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M.
Teran. A second order virtual node method for elliptic problems with interfaces and
irregular domains. Journal of Computational Physics, 229(18):6405–6426, 2010.

[16] Alexander G. Belyaev and Pierre-Alain Fayolle. On variational and PDE-based dis-
tance function approximations. Computer Graphics Forum, 34(8):104–118, 2015. doi:
https://doi.org/10.1111/cgf.12611. URL https://onlinelibrary.wiley.com/doi/

abs/10.1111/cgf.12611.

[17] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation. SIAM
Review, 46(3):501–517, 2004.

[18] Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Variational
problems and partial differential equations on implicit surfaces. Journal of Compu-
tational Physics, 174(2):759–780, 2001. ISSN 0021-9991. doi: https://doi.org/10.
1006/jcph.2001.6937. URL https://www.sciencedirect.com/science/article/

pii/S0021999101969372.

144

https://www.autodesk.com/ca-en/products/autocad/overview
https://www.autodesk.com/ca-en/products/autocad/overview
https://www.autodesk.com/ca-en/products/maya/overview
https://www.autodesk.com/ca-en/products/maya/overview
https://doi.org/10.1145/3618374
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12611
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12611
https://www.sciencedirect.com/science/article/pii/S0021999101969372
https://www.sciencedirect.com/science/article/pii/S0021999101969372

[19] A. Bunge and M. Botsch. A survey on discrete Laplacians for general polygonal
meshes. Computer Graphics Forum, 42(2):521–544, 2023. doi: https://doi.org/10.
1111/cgf.14777.

[20] Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Mass-
ing. CutFEM: Discretizing geometry and partial differential equations. International
Journal for Numerical Methods in Engineering, 104(7):472–501, 2015.

[21] Erik Burman, Peter Hansbo, and Mats G. Larson. A stabilized cut finite element
method for partial differential equations on surfaces: the Laplace–Beltrami operator.
Computer Methods in Applied Mechanics and Engineering, 285:188–207, 2015.

[22] Erik Burman, Peter Hansbo, Mats G. Larson, and Sara Zahedi. Stabilized CutFEM
for the convection problem on surfaces. Numerische Mathematik, 141:103–139, 2019.

[23] Chieh Chen and Richard Tsai. Implicit boundary integral methods for the Helmholtz
equation in exterior domains. Research in the Mathematical Sciences, 4(1):19, 2017.

[24] Yujia Chen and Colin B. Macdonald. The closest point method and multigrid solvers
for elliptic equations on surfaces. SIAM Journal on Scientific Computing, 37(1):
A134–A155, 2015. doi: 10.1137/130929497.

[25] Ka Chun Cheung, Leevan Ling, and Steven J. Ruuth. A localized meshless method
for diffusion on folded surfaces. Journal of Computational Physics, 297:194–206,
2015. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2015.05.021. URL https:

//www.sciencedirect.com/science/article/pii/S0021999115003551.

[26] Jay Chu and Richard Tsai. Volumetric variational principles for a class of partial
differential equations defined on surfaces and curves. Research in the Mathematical
Sciences, 5(2):19, 2018.

[27] Ming Chuang. Grid-based finite elements system for solving Laplace-Beltrami equa-
tions on 2-manifolds. PhD thesis, Johns Hopkins University, 2013.

[28] Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael
Kazhdan. Estimating the Laplace-Beltrami operator by restricting 3D functions.
Computer Graphics Forum, 28(5):1475–1484, 2009. doi: https://doi.org/10.1111/
j.1467-8659.2009.01524.x. URL https://onlinelibrary.wiley.com/doi/abs/10.

1111/j.1467-8659.2009.01524.x.

145

https://www.sciencedirect.com/science/article/pii/S0021999115003551
https://www.sciencedirect.com/science/article/pii/S0021999115003551
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01524.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01524.x

[29] Keenan Crane. Conformal geometry processing. PhD thesis, California Institute of
Technology, 2013.

[30] Keenan Crane. Project page for the heat method for distance computation, 2013.
https://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/index.html.

[31] Keenan Crane. Fish, 2019. Downloaded modified version from odedstein-meshes
https://github.com/odedstein/meshes/tree/master/objects/fish, originally
from https://cs.cmu.edu/~kmcrane/Projects/ModelRepository.

[32] Keenan Crane. Bob, 2024. Downloaded from https://cs.cmu.edu/~kmcrane/

Projects/ModelRepository.

[33] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. Geodesics in heat: A new
approach to computing distance based on heat flow. ACM Transactions on Graphics
(TOG), 32(5):1–11, 2013.

[34] Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. A survey of algorithms
for geodesic paths and distances. arXiv preprint arXiv:2007.10430, 2020.

[35] Fang Da, Christopher Batty, and Eitan Grinspun. Multimaterial mesh-based surface
tracking. ACM Transactions on Graphics (TOG), 33(4):112–1, 2014.

[36] Fernando de Goes, Mathieu Desbrun, and Yiying Tong. Vector field processing on
triangle meshes. In SIGGRAPH Asia 2015 Courses, SA ’15, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450339247. doi: 10.1145/
2818143.2818167. URL https://doi.org/10.1145/2818143.2818167.

[37] Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. Subdivision
exterior calculus for geometry processing. ACM Transactions on Graphics (TOG),
35(4):1–11, 2016.

[38] Fernando de Goes, William Sheffler, and Kurt Fleischer. Character articulation
through profile curves. ACM Transactions on Graphics (TOG), 41(4), July 2022.
ISSN 0730-0301. doi: 10.1145/3528223.3530060. URL https://doi.org/10.1145/

3528223.3530060.

[39] Ismail Demir and Rüdiger Westermann. Vector-to-closest-point octree for surface ray-
casting. In David Bommes, Tobias Ritschel, and Thomas Schultz, editors, Vision,
Modeling & Visualization. The Eurographics Association, 2015. ISBN 978-3-905674-
95-8. doi: 10.2312/vmv.20151259.

146

https://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/index.html
https://github.com/odedstein/meshes/tree/master/objects/fish
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://doi.org/10.1145/2818143.2818167
https://doi.org/10.1145/3528223.3530060
https://doi.org/10.1145/3528223.3530060

[40] Ismail Demir, Mihaela Jarema, and Rüdiger Westermann. Visualizing the cen-
tral tendency of ensembles of shapes. In SIGGRAPH ASIA 2016 Symposium
on Visualization, SA ’16, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450345477. doi: 10.1145/3002151.3002165. URL https:

//doi.org/10.1145/3002151.3002165.

[41] Christian Dick, Joachim Georgii, and Rüdiger Westermann. A hexahedral multigrid
approach for simulating cuts in deformable objects. IEEE Transactions on Visual-
ization and Computer Graphics, 17(11):1663–1675, 2010.

[42] Huong Quynh Dinh, Anthony Yezzi, and Greg Turk. Texture transfer during shape
transformation. ACM Transactions on Graphics (TOG), 24(2):289–310, 2005.

[43] Gerhard Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces, pages
142–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. ISBN 978-3-540-
46024-4. doi: 10.1007/BFb0082865. URL https://doi.org/10.1007/BFb0082865.

[44] Gerhard Dziuk and Charles M. Elliott. Surface finite elements for parabolic equations.
Journal of Computational Mathematics, pages 385–407, 2007.

[45] James Eells and Luc Lemaire. A report on harmonic maps. Bulletin of the London
Mathematical Society, 10(1):1–68, 1978.

[46] Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. Reversible harmonic maps
between discrete surfaces. ACM Transactions on Graphics (TOG), 38(2):1–12, 2019.

[47] Nicole Feng and Keenan Crane. A heat method for generalized signed distance. ACM
Transactions on Graphics (TOG), 43(4):1–19, 2024.

[48] Blender Foundation. Blender: Free and open 3D creation software, URL accessed
April 2025. https://www.blender.org/.

[49] Prerna Gera and David Salac. Cahn–Hilliard on surfaces: A numerical study. Applied
Mathematics Letters, 73:56–61, 2017.

[50] Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. A second-
order-accurate symmetric discretization of the Poisson equation on irregular domains.
Journal of Computational Physics, 176(1):205–227, 2002.

[51] Joachim Giesen, Balint Miklos, Mark Pauly, and Camille Wormser. The scale axis
transform. In Proceedings of the Twenty-Fifth Annual Symposium on Computa-
tional Geometry, SCG ’09, page 106–115, New York, NY, USA, 2009. Association for

147

https://doi.org/10.1145/3002151.3002165
https://doi.org/10.1145/3002151.3002165
https://doi.org/10.1007/BFb0082865
https://www.blender.org/

Computing Machinery. ISBN 9781605585017. doi: 10.1145/1542362.1542388. URL
https://doi.org/10.1145/1542362.1542388.

[52] Alfred Gray. An Introduction to Weyl’s Tube Formula, pages 1–12. Birkhäuser
Basel, Basel, 2004. ISBN 978-3-0348-7966-8. doi: 10.1007/978-3-0348-7966-8 1.
URL https://doi.org/10.1007/978-3-0348-7966-8_1.

[53] John B. Greer. An improvement of a recent Eulerian method for solving PDEs on
general geometries. Journal of Scientific Computing, 29(3):321–352, 2006.

[54] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[55] Peter Heiss-Synak, Aleksei Kalinov, Malina Strugaru, Arian Etemadi, Huidong Yang,
and Chris Wojtan. Multi-material mesh-based surface tracking with implicit topology
changes. ACM Transactions on Graphics (TOG), 43(4):1–14, 2024.

[56] Jeffrey L. Hellrung Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran. A
second order virtual node method for elliptic problems with interfaces and irregular
domains in three dimensions. Journal of Computational Physics, 231(4):2015–2048,
2012.

[57] Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. Geometry-based control
of fire simulation. The Visual Computer, 26(9):1217–1228, 2010.

[58] Ben Houston, Michael B Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth.
Hierarchical RLE level set: A compact and versatile deformable surface representa-
tion. ACM Transactions on Graphics (TOG), 25(1):151–175, 2006.

[59] Alexander Hrennikoff. Solution of problems of elasticity by the framework method.
Journal of Applied Mechanics, 8(4):A169–A175, 1941. doi: 10.1115/1.4009129. URL
https://doi.org/10.1115/1.4009129.

[60] Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele
Panozzo. Tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG),
37(4):60:1–60:14, 2018.

[61] Intel. MKL PARDISO: Parallel direct sparse solver inter-
face, URL accessed April 2025. https://www.intel.com/

content/www/us/en/docs/onemkl/developer-reference-c/2023-0/

onemkl-pardiso-parallel-direct-sparse-solver-iface.html.

148

https://doi.org/10.1145/1542362.1542388
https://doi.org/10.1007/978-3-0348-7966-8_1
http://eigen.tuxfamily.org
https://doi.org/10.1115/1.4009129
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html

[62] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing
library, 2018. https://libigl.github.io/.

[63] Wenzel Jakob. Enoki: structured vectorization and differentiation on modern pro-
cessor architectures, 2019. https://github.com/mitsuba-renderer/enoki.

[64] Stefan Jeschke, David Cline, and Peter Wonka. Rendering surface details with dif-
fusion curves. ACM Transactions on Graphics (TOG), 28(5):1–8, December 2009.
ISSN 0730-0301. doi: 10.1145/1618452.1618463. URL https://doi.org/10.1145/

1618452.1618463.

[65] Jürgen Jost. Riemannian geometry and geometric analysis, volume 42005. Springer,
2008.

[66] Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus
Gross. Enrichment textures for detailed cutting of shells. ACM Transactions on
Graphics (TOG), 28(3), July 2009. ISSN 0730-0301. doi: 10.1145/1531326.1531356.
URL https://doi.org/10.1145/1531326.1531356.

[67] Mark Kim and Charles Hansen. Surface flow visualization using the closest point
embedding. In 2015 IEEE Pacific Visualization Symposium (PacificVis), pages 17–
23, 2015. doi: 10.1109/PACIFICVIS.2015.7156351.

[68] Theodore Kim, Jerry Tessendorf, and Nils Thuerey. Closest point turbulence for
liquid surfaces. ACM Transactions on Graphics (TOG), 32(2):1–13, 2013.

[69] Ron Kimmel and James A. Sethian. Computing geodesic paths on manifolds. Proceed-
ings of the National Academy of Sciences, 95(15):8431–8435, 1998. doi: 10.1073/pnas.
95.15.8431. URL https://www.pnas.org/doi/abs/10.1073/pnas.95.15.8431.

[70] Nathan King, Steven Ruuth, and Christopher Batty. A simple heat method for
computing geodesic paths on general manifold representations. In SIGGRAPH
Asia 2024 Posters, SA ’24, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400711381. doi: 10.1145/3681756.3697920. URL
https://doi.org/10.1145/3681756.3697920.

[71] Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty.
A closest point method for PDEs on manifolds with interior boundary conditions for
geometry processing. ACM Transactions on Graphics (TOG), 43(5), August 2024.
ISSN 0730-0301. doi: 10.1145/3673652. URL https://doi.org/10.1145/3673652.

149

https://libigl.github.io/
https://github.com/mitsuba-renderer/enoki
https://doi.org/10.1145/1618452.1618463
https://doi.org/10.1145/1618452.1618463
https://doi.org/10.1145/1531326.1531356
https://www.pnas.org/doi/abs/10.1073/pnas.95.15.8431
https://doi.org/10.1145/3681756.3697920
https://doi.org/10.1145/3673652

[72] Nathan D. King and Steven J. Ruuth. Solving variational problems and partial differ-
ential equations that map between manifolds via the closest point method. Journal
of Computational Physics, 336:330–346, 2017. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2017.02.019. URL https://www.sciencedirect.com/science/

article/pii/S0021999117301122.

[73] Tobias Kirschstein, Javier Romero, Artem Sevastopolsky, Matthias Nießner, and
Shunsuke Saito. Avat3r: Large animatable Gaussian reconstruction model for high-
fidelity 3D head avatars. arXiv preprint arXiv:2502.20220, 2025.

[74] Ravikrishna Kolluri. Provably good moving least squares. ACM Transactions on
Algorithms (TALG), 4(2):1–25, 2008.

[75] Catherine Kublik and Richard Tsai. Integration over curves and surfaces defined by
the closest point mapping. Research in the Mathematical Sciences, 3(1):3, 2016.

[76] Catherine Kublik, Nicolay M. Tanushev, and Richard Tsai. An implicit interface
boundary integral method for Poisson’s equation on arbitrary domains. Journal of
Computational Physics, 247:279–311, 2013.

[77] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 2, pages 995–1001 vol.2, 2000. doi: 10.1109/ROBOT.2000.
844730.

[78] Steven LaValle. Rapidly-exploring random trees: A new tool for path planning.
Research Report 9811, 1998.

[79] Randall J. LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. SIAM, 2007.

[80] Jian Liang and Hongkai Zhao. Solving partial differential equations on point clouds.
SIAM Journal on Scientific Computing, 35(3):A1461–A1486, 2013.

[81] Hsueh-Ti D. Liu, Alec Jacobson, and Keenan Crane. A Dirac operator for extrinsic
shape analysis. In Computer Graphics Forum, volume 36, pages 139–149. Wiley
Online Library, 2017.

[82] Wing Kam Liu, Shaofan Li, and Harold S Park. Eighty years of the finite element
method: Birth, evolution, and future. Archives of Computational Methods in Engi-
neering, 29(6):4431–4453, 2022.

150

https://www.sciencedirect.com/science/article/pii/S0021999117301122
https://www.sciencedirect.com/science/article/pii/S0021999117301122

[83] Yu-Shen Liu, Jean-Claude Paul, Jun-Hai Yong, Pi-Qiang Yu, Hui Zhang, Jia-Guang
Sun, and Karthik Ramani. Automatic least-squares projection of points onto point
clouds with applications in reverse engineering. Computer-Aided Design, 38(12):
1251–1263, 2006.

[84] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and smoke with
an octree data structure. ACM Transactions on Graphics (TOG), 23(3):457–462,
August 2004. ISSN 0730-0301. doi: 10.1145/1015706.1015745. URL https://doi.

org/10.1145/1015706.1015745.

[85] Frank Losasso, Ronald Fedkiw, and Stanley Osher. Spatially adaptive techniques for
level set methods and incompressible flow. Computers & Fluids, 35(10):995–1010,
2006.

[86] Jaehwan Ma, Sang Won Bae, and Sunghee Choi. 3D medial axis point approx-
imation using nearest neighbors and the normal field. The Visual Computer, 28
(1):7–19, 2012. doi: 10.1007/s00371-011-0594-7. URL https://doi.org/10.1007/

s00371-011-0594-7.

[87] Colin B. Macdonald and Steven J. Ruuth. Level set equations on surfaces via the
closest point method. Journal of Scientific Computing, 35(2-3):219–240, 2008.

[88] Colin B. Macdonald and Steven J. Ruuth. The implicit closest point method for the
numerical solution of partial differential equations on surfaces. SIAM Journal on
Scientific Computing, 31(6):4330–4350, 2010.

[89] Colin B. Macdonald, Jeremy Brandman, and Steven J. Ruuth. Solving eigenvalue
problems on curved surfaces using the closest point method. Journal of Computa-
tional Physics, 230(22):7944–7956, 2011.

[90] Colin B. Macdonald, Barry Merriman, and Steven J. Ruuth. Simple computation of
reaction–diffusion processes on point clouds. Proceedings of the National Academy
of Sciences, 110(23):9209–9214, 2013. doi: 10.1073/pnas.1221408110. URL https:

//www.pnas.org/doi/abs/10.1073/pnas.1221408110.

[91] Miles Macklin. Warp: A high-performance python framework for GPU simulation
and graphics. https://github.com/nvidia/warp, March 2022. NVIDIA GPU Tech-
nology Conference (GTC).

151

https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1007/s00371-011-0594-7
https://doi.org/10.1007/s00371-011-0594-7
https://www.pnas.org/doi/abs/10.1073/pnas.1221408110
https://www.pnas.org/doi/abs/10.1073/pnas.1221408110
https://github.com/nvidia/warp

[92] P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. Adaptive
physically based models in computer graphics. Computer Graphics Forum, 36(6):312–
337, 2017. doi: https://doi.org/10.1111/cgf.12941. URL https://onlinelibrary.

wiley.com/doi/abs/10.1111/cgf.12941.

[93] Zoë Marschner, Paul Zhang, David Palmer, and Justin Solomon. Sum-of-squares
geometry processing. ACM Transactions on Graphics (TOG), 40(6):1–13, 2021.

[94] Lindsay Martin and Yen-Hsi R. Tsai. Equivalent extensions of Hamil-
ton–Jacobi–Bellman equations on hypersurfaces. Journal of Scientific Computing,
84(3):1–29, 2020.

[95] Dimas Mart́ınez, Luiz Velho, and Paulo C. Carvalho. Computing geodesics on trian-
gular meshes. Computers & Graphics, 29(5):667–675, 2005.

[96] Thomas März and Colin B. Macdonald. Calculus on surfaces with general closest
point functions. SIAM Journal on Numerical Analysis, 50(6):3303–3328, 2012. doi:
10.1137/120865537.

[97] Sean P. Mauch. Efficient algorithms for solving static Hamilton-Jacobi equations.
PhD thesis, California Institute of Technology, 2003.

[98] Ian C. May, Ronald D. Haynes, and Steven J. Ruuth. Schwarz solvers and precondi-
tioners for the closest point method. SIAM Journal on Scientific Computing, 42(6):
A3584–A3609, 2020.

[99] Ian C.T. May, Ronald D. Haynes, and Steven J. Ruuth. A closest point method
library for PDEs on surfaces with parallel domain decomposition solvers and precon-
ditioners. Numerical Algorithms, pages 1–23, 2022.

[100] Balint Miklos, Joachim Giesen, and Mark Pauly. Discrete scale axis representations
for 3D geometry. In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781450302104. doi:
10.1145/1833349.1778838. URL https://doi.org/10.1145/1833349.1778838.

[101] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. NeRF: representing scenes as neural radiance fields for
view synthesis. Commun. ACM, 65(1):99–106, December 2021. ISSN 0001-0782. doi:
10.1145/3503250. URL https://doi.org/10.1145/3503250.

152

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12941
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12941
https://doi.org/10.1145/1833349.1778838
https://doi.org/10.1145/3503250

[102] Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. Walkin’ robin:
Walk on stars with robin boundary conditions. ACM Transactions on Graphics
(TOG), 43(4), July 2024. ISSN 0730-0301. doi: 10.1145/3658153. URL https:

//doi.org/10.1145/3658153.

[103] Chohong Min and Frédéric Gibou. A second order accurate projection method for
the incompressible Navier–Stokes equations on non-graded adaptive grids. Journal
of Computational Physics, 219(2):912–929, 2006.

[104] Joseph S.B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The discrete
geodesic problem. SIAM Journal on Computing, 16(4):647–668, 1987.

[105] Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. Non-
manifold level sets: A multivalued implicit surface representation with applications
to self-collision processing. ACM Transactions on Graphics (TOG), 34(6):1–9, 2015.

[106] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack
growth without remeshing. International Journal for Numerical Methods in Engi-
neering, 46(1):131–150, 1999.

[107] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing
mesh topology during simulation. ACM Transactions on Graphics (TOG), 23(3):
385–392, 2004.

[108] D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt. Efficient 2D simulation
on moving 3D surfaces. Computer Graphics Forum, 39(8):27–38, 2020. doi: https:
//doi.org/10.1111/cgf.14098. URL https://onlinelibrary.wiley.com/doi/abs/

10.1111/cgf.14098.

[109] Roger Moser. Partial regularity for harmonic maps and related problems. World
Scientific, 2005.

[110] Mervin E. Muller. Some continuous Monte Carlo methods for the Dirichlet problem.
The Annals of Mathematical Statistics, 27(3):569 – 589, 1956. doi: 10.1214/aoms/
1177728169.

[111] Ken Museth. VDB: High-resolution sparse volumes with dynamic topology. ACM
transactions on graphics (TOG), 32(3):1–22, 2013.

[112] Ken Museth. Nanovdb: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In ACM SIGGRAPH 2021 Talks, SIGGRAPH

153

https://doi.org/10.1145/3658153
https://doi.org/10.1145/3658153
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14098
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14098

’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383738. doi: 10.1145/3450623.3464653. URL https://doi.org/10.1145/

3450623.3464653.

[113] Facundo Mémoli and Guillermo Sapiro. Fast computation of weighted distance func-
tions and geodesics on implicit hyper-surfaces. Journal of Computational Physics,
173(2):730–764, 2001.

[114] Facundo Mémoli, Guillermo Sapiro, and Stanley Osher. Solving variational problems
and partial differential equations mapping into general target manifolds. Journal of
Computational Physics, 195(1):263–292, 2004.

[115] Facundo Mémoli, Guillermo Sapiro, and Paul Thompson. Implicit brain imag-
ing. NeuroImage, 23:S179–S188, 2004. ISSN 1053-8119. doi: https://doi.org/10.
1016/j.neuroimage.2004.07.072. URL https://www.sciencedirect.com/science/

article/pii/S1053811904003878. Mathematics in Brain Imaging.

[116] Takashi Nagata. Simple local interpolation of surfaces using normal vectors. Com-
puter Aided Geometric Design, 22(4):327–347, 2005.

[117] Rajkishore Nayak and Rajiv Padhye. The use of laser in garment manufacturing:
An overview. Fashion and textiles, 3:1–16, 2016.

[118] Yen Ting Ng, Chohong Min, and Frédéric Gibou. An efficient fluid–solid coupling
algorithm for single-phase flows. Journal of Computational Physics, 228(23):8807–
8829, 2009.

[119] Thien Nguyen, Kȩstutis Karčiauskas, and Jörg Peters. C1 finite elements on non-
tensor-product 2D and 3D manifolds. Applied Mathematics and Computation, 272:
148–158, 2016.

[120] Michael B Nielsen and Ken Museth. Dynamic tubular grid: An efficient data struc-
ture and algorithms for high resolution level sets. Journal of Scientific Computing,
26:261–299, 2006.

[121] nTop. nTop: Computational design software (formally nTopology), URL accessed
April 2025. https://www.ntop.com/.

[122] Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle
Thollot, and David Salesin. Diffusion curves: a vector representation for smooth-
shaded images. In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, New York,

154

https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/3450623.3464653
https://www.sciencedirect.com/science/article/pii/S1053811904003878
https://www.sciencedirect.com/science/article/pii/S1053811904003878
https://www.ntop.com/

NY, USA, 2008. Association for Computing Machinery. ISBN 9781450301121. doi:
10.1145/1399504.1360691. URL https://doi.org/10.1145/1399504.1360691.

[123] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces.
Springer, 2004.

[124] Richard Palais, Hermann Karcher, et al. 3DXM virtual math museum, 2023. https:
//virtualmathmuseum.org.

[125] John E Pearson. Complex patterns in a simple system. Science, 261(5118):189–192,
1993.

[126] Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and Myungjoo Kang.
A PDE-based fast local level set method. Journal of Computational Physics, 155(2):
410–438, 1999.

[127] A. Petras and S.J. Ruuth. PDEs on moving surfaces via the closest point method and
a modified grid based particle method. Journal of Computational Physics, 312:139–
156, 2016. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2016.02.024. URL
https://www.sciencedirect.com/science/article/pii/S0021999116000814.

[128] Argyrios Petras, Leevan Ling, and Steven J. Ruuth. An RBF-FD closest point
method for solving PDEs on surfaces. Journal of Computational Physics, 370:43–57,
2018.

[129] Argyrios Petras, Leevan Ling, Cécile Piret, and Steven J. Ruuth. A least-squares
implicit RBF-FD closest point method and applications to PDEs on moving surfaces.
Journal of Computational Physics, 381:146–161, 2019.

[130] Argyrios Petras, Leevan Ling, and Steven J. Ruuth. Meshfree semi-Lagrangian meth-
ods for solving surface advection PDEs. Journal of Scientific Computing, 93(1):1–22,
2022.

[131] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[132] Cécile Piret. The orthogonal gradients method: A radial basis functions method for
solving partial differential equations on arbitrary surfaces. Journal of Computational
Physics, 231(14):4662–4675, 2012. ISSN 0021-9991. doi: https://doi.org/10.1016/
j.jcp.2012.03.007. URL https://www.sciencedirect.com/science/article/pii/

S0021999112001477.

155

https://doi.org/10.1145/1399504.1360691
https://virtualmathmuseum.org
https://virtualmathmuseum.org
https://www.sciencedirect.com/science/article/pii/S0021999116000814
https://www.sciencedirect.com/science/article/pii/S0021999112001477
https://www.sciencedirect.com/science/article/pii/S0021999112001477

[133] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. DreamFusion: Text-
to-3D using 2D diffusion. arXiv preprint arXiv:2209.14988, 2022.

[134] Omid Poursaeed, Matthew Fisher, Noam Aigerman, and Vladimir G Kim. Coupling
explicit and implicit surface representations for generative 3D modeling. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part X 16, pages 667–683. Springer, 2020.

[135] Yixuan Qiu. Lbfgs++, 2023. https://lbfgspp.statr.me/.

[136] Mariana Remeš́ıková, Marián Šagát, and Peter Novysedlák. Discrete Lagrangian al-
gorithm for finding geodesics on triangular meshes. Applied Mathematical Modelling,
76:396–427, 2019.

[137] Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplace-Beltrami spectra
as ‘Shape-DNA’ of surfaces and solids. Computer-Aided Design, 38(4):342–366, 2006.

[138] Steven J. Ruuth and Barry Merriman. A simple embedding method for solving partial
differential equations on surfaces. J. Comput. Phys., 227(3):1943–1961, January 2008.
ISSN 0021-9991. doi: 10.1016/j.jcp.2007.10.009. URL https://doi.org/10.1016/

j.jcp.2007.10.009.

[139] Rohan Sawhney. fcpw: Fastest closest points in the west, 2022. https://github.

com/rohan-sawhney/fcpw.

[140] Rohan Sawhney and Keenan Crane. Monte Carlo geometry processing: a grid-
free approach to PDE-based methods on volumetric domains. ACM Transactions
on Graphics (TOG), 39(4), August 2020. ISSN 0730-0301. doi: 10.1145/3386569.
3392374. URL https://doi.org/10.1145/3386569.3392374.

[141] Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. Grid-free Monte
Carlo for PDEs with spatially varying coefficients. ACM Transactions on Graphics
(TOG), 41(4), July 2022. ISSN 0730-0301. doi: 10.1145/3528223.3530134. URL
https://doi.org/10.1145/3528223.3530134.

[142] Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. Walk on stars:
A grid-free Monte Carlo method for PDEs with Neumann boundary conditions. ACM
Transactions on Graphics (TOG), 42(4), August 2023. doi: 10.1145/3592398.

[143] Robert Saye. High-order methods for computing distances to implicitly defined sur-
faces. Communications in Applied Mathematics and Computational Science, 9(1):
107–141, 2014.

156

https://lbfgspp.statr.me/
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.1016/j.jcp.2007.10.009
https://github.com/rohan-sawhney/fcpw
https://github.com/rohan-sawhney/fcpw
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3528223.3530134

[144] Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis
Zorin. Decoupling simulation accuracy from mesh quality. ACM Transactions on
Graphics (TOG), 2018.

[145] Richard M. Schoen and Shing Tung Yau. Lectures on harmonic maps. 1997.

[146] Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. A Cartesian grid
embedded boundary method for the heat equation and Poisson’s equation in three
dimensions. Journal of Computational Physics, 211(2):531–550, 2006.

[147] Martin Seiler, Denis Steinemann, Jonas Spillmann, and Matthias Harders. Robust
interactive cutting based on an adaptive octree simulation mesh. The Visual Com-
puter, 27:519–529, 2011.

[148] Silvia Sellán and Alec Jacobson. Neural stochastic poisson surface reconstruction.
In SIGGRAPH Asia 2023 Conference Papers, SA ’23, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400703157. doi: 10.1145/3610548.
3618162. URL https://doi.org/10.1145/3610548.3618162.

[149] Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. SPGrid: A
sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions
on Graphics (TOG), 33(6):1–12, 2014.

[150] Bobak Shahriari. The modified Cahn-Hilliard equation on general surfaces. Master’s
thesis, Simon Fraser University, 2010.

[151] Nicholas Sharp and Keenan Crane. Variational surface cutting. ACM Transactions
on Graphics (TOG), 37(4):1–13, 2018.

[152] Nicholas Sharp and Keenan Crane. You can find geodesic paths in triangle meshes by
just flipping edges. ACM Trans. Graph., 39(6), November 2020. ISSN 0730-0301. doi:
10.1145/3414685.3417839. URL https://doi.org/10.1145/3414685.3417839.

[153] Nicholas Sharp and Alec Jacobson. Spelunking the deep: Guaranteed queries on
general neural implicit surfaces via range analysis. ACM Transactions on Graphics
(TOG), 41(4), July 2022. ISSN 0730-0301. doi: 10.1145/3528223.3530155. URL
https://doi.org/10.1145/3528223.3530155.

[154] Nicholas Sharp, Keenan Crane, et al. GeometryCentral: A modern c++ library of
data structures and algorithms for geometry processing. 2019.

157

https://doi.org/10.1145/3610548.3618162
https://doi.org/10.1145/3414685.3417839
https://doi.org/10.1145/3528223.3530155

[155] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. The vector heat method. ACM
Transactions on Graphics (TOG), 38(3):1–19, 2019.

[156] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. Navigating intrinsic triangula-
tions. ACM Transactions on Graphics (TOG), 38(4):55, 2019.

[157] Nicholas Sharp et al. Polyscope, 2019. www.polyscope.run.

[158] Lin Shi and Yizhou Yu. Visual smoke simulation with adaptive octree refinement.
In Computer Graphics and Imaging, pages 13–19, 2004.

[159] Yonggang Shi, Paul M. Thompson, Ivo Dinov, Stanley Osher, and Arthur W. Toga.
Direct cortical mapping via solving partial differential equations on implicit surfaces.
Medical image analysis, 11(3):207–223, 2007.

[160] Yonggang Shi, Jonathan H. Morra, Paul M. Thompson, and Arthur W. Toga. Inverse-
consistent surface mapping with Laplace-Beltrami eigen-features. In International
Conference on Information Processing in Medical Imaging, pages 467–478. Springer,
2009.

[161] Side Effects Software, Inc. Houdini, 2023. URL https://www.sidefx.com/

products/houdini/. Computer Software.

[162] John Strain. Fast tree-based redistancing for level set computations. Journal of
Computational Physics, 152(2):664–686, 1999.

[163] Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya
Hachisuka. A practical walk-on-boundary method for boundary value problems.
ACM Transactions on Graphics (TOG), 42(4), July 2023. ISSN 0730-0301. doi:
10.1145/3592109. URL https://doi.org/10.1145/3592109.

[164] Ryusuke Sugimoto, Nathan King, Toshiya Hachisuka, and Christopher Batty. Pro-
jected walk on spheres: A Monte Carlo closest point method for surface PDEs. In
SIGGRAPH Asia 2024 Conference Papers, SA ’24, New York, NY, USA, 2024. As-
sociation for Computing Machinery. ISBN 9798400711312. doi: 10.1145/3680528.
3687599. URL https://doi.org/10.1145/3680528.3687599.

[165] Xin Sun, Guofu Xie, Yue Dong, Stephen Lin, Weiwei Xu, Wencheng Wang, Xin
Tong, and Baining Guo. Diffusion curve textures for resolution independent texture
mapping. ACM Transactions on Graphics (TOG), 31(4):1–9, 2012.

158

https://www.sidefx.com/products/houdini/
https://www.sidefx.com/products/houdini/
https://doi.org/10.1145/3592109
https://doi.org/10.1145/3680528.3687599

[166] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues
Hoppe. Fast exact and approximate geodesics on meshes. ACM Transactions on
Graphics (TOG), 24(3):553–560, 2005.

[167] Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and
Alexandru Telea. 3D skeletons: A state-of-the-art report. Computer Graphics Forum,
35(2):573–597, 2016. doi: https://doi.org/10.1111/cgf.12865.

[168] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geomet-
ric level of detail: Real-time rendering with implicit 3D shapes. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 11358–
11367, 2021.

[169] Bei Tang, Guillermo Sapiro, and Vicent Caselles. Color image enhancement via
chromaticity diffusion. IEEE Transactions on Image Processing, 10(5):701–707, 2001.

[170] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.1.1 edition, 2020. URL https://doc.cgal.org/5.1.1/Manual/packages.html.

[171] The Stanford 3D Scanning Repository. Lucy and XYZ RGB Dragon, 2024.
Downloaded modified version of Lucy from https://animium.com/2013/11/

lucy-angel-3d-model. Original Lucy and XYZ RGB Dragon meshes at https:

//graphics.stanford.edu/data/3Dscanrep.

[172] Li Tian, Colin B. Macdonald, and Steven J. Ruuth. Segmentation on surfaces with
the closest point method. In 2009 16th IEEE International Conference on Image
Processing (ICIP), pages 3009–3012. IEEE, 2009.

[173] Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and
theory, volume 34. Springer Science & Business Media, 2004.

[174] Greg Turk. Generating textures on arbitrary surfaces using reaction-diffusion. ACM
SIGGRAPH Computer Graphics, 25(4):289–298, 1991.

[175] Greg Turk. Texture synthesis on surfaces. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, pages 347–354, 2001.

[176] Luiz Gustavo DO Véras, Felipe LL Medeiros, and Lamartine NF Guimaráes. System-
atic literature review of sampling process in rapidly-exploring random trees. IEEE
Access, 7:50933–50953, 2019.

159

https://doc.cgal.org/5.1.1/Manual/packages.html
https://animium.com/2013/11/lucy-angel-3d-model
https://animium.com/2013/11/lucy-angel-3d-model
https://graphics.stanford.edu/data/3Dscanrep
https://graphics.stanford.edu/data/3Dscanrep

[177] Ingrid von Glehn, Thomas März, and Colin B. Macdonald. An embedded method-
of-lines approach to solving partial differential equations on surfaces, 2013.

[178] Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. Codimensional surface
tension flow using moving-least-squares particles. ACM Transactions on Graphics
(TOG), 39(4):42–1, 2020.

[179] Peng Wang, Tom Abel, and Ralf Kaehler. Adaptive mesh fluid simulations on GPU.
New Astronomy, 15(7):581–589, 2010.

[180] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN:
Octree-based convolutional neural networks for 3D shape analysis. ACM Transac-
tions on Graphics (TOG), 36(4):1–11, 2017.

[181] Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary manifold surfaces. In
Proceedings of the 28th annual conference on Computer graphics and interactive tech-
niques, pages 355–360, 2001.

[182] Hermann Weyl. On the volume of tubes. American Journal of Mathematics, 61(2):
461–472, 1939.

[183] Ross T Whitaker. A level-set approach to 3D reconstruction from range data. In-
ternational journal of computer vision, 29:203–231, 1998.

[184] Ruben Wiersma, Elmar Eisemann, and Klaus Hildebrandt. CNNs on surfaces using
rotation-equivariant features. ACM Transactions on Graphics (TOG), 39(4):92–1,
2020.

[185] Romy Williamson and Niloy J. Mitra. Neural geometry processing via spherical
neural surfaces. Eurographics, 2025.

[186] Chunlin Wu and Xuecheng Tai. A level set formulation of geodesic curvature flow
on simplicial surfaces. IEEE Transactions on Visualization and Computer Graphics,
16(4):647–662, 2009.

[187] Shi-Qing Xin and Guo-Jin Wang. Efficiently determining a locally exact shortest
path on polyhedral surfaces. Computer-Aided Design, 39(12):1081–1090, 2007.

[188] Shi-Qing Xin, Ying He, and Chi-Wing Fu. Efficiently computing exact geodesic loops
within finite steps. IEEE Transactions on Visualization and Computer Graphics, 18
(6):879–889, 2011.

160

[189] Tong Xu. Recent advances in rapidly-exploring random tree: A review. He-
liyon, 10(11):e32451, 2024. ISSN 2405-8440. doi: https://doi.org/10.1016/j.
heliyon.2024.e32451. URL https://www.sciencedirect.com/science/article/

pii/S2405844024084822.

[190] Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry
processing with neural fields. Advances in Neural Information Processing Systems,
34:22483–22497, 2021.

[191] Junxiang Yang, Yibao Li, and Junseok Kim. A practical finite difference scheme
for the Navier–Stokes equation on curved surfaces in R3. Journal of Computational
Physics, page 109403, 2020.

[192] Zhang Yingjie and Ge Liling. Improved moving least squares algorithm for directed
projecting onto point clouds. Measurement, 44(10):2008–2019, 2011.

[193] Na Yuan, Peihui Wang, Wenlong Meng, Shuang-Min Chen, Jian Xu, Shiqing Xin,
Ying He, and Wenping Wang. A variational framework for curve shortening in various
geometric domains. IEEE Transactions on Visualization and Computer Graphics,
2021.

[194] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design on sur-
faces. ACM Transactions on Graphics (TOG), 25(4):1294–1326, 2006.

[195] Yihuan Zhang, Liang Wang, Xuhui Jiang, Yong Zeng, and Yifan Dai. An efficient
lidar-based localization method for self-driving cars in dynamic environments. Robot-
ica, 40(1):38–55, 2022.

161

https://www.sciencedirect.com/science/article/pii/S2405844024084822
https://www.sciencedirect.com/science/article/pii/S2405844024084822

APPENDICES

162

Appendix A

Closest Point Computation

Some manifolds allow closest points to be computed analytically, e.g., lines, circles, planes,
spheres, cylinders, and tori. We use the analytical expressions for exact closest points in
all examples for which they exist. For parameterized manifolds, closest points can be com-
puted using standard numerical optimization techniques, e.g., Ruuth and Merriman [138]
used Newton’s method for various manifolds, such as a helix. The following optimization
problem is solved

argmin
t

1

2
∥p(t)− xi∥2,

for the parameters t (e.g., t = t for a 1D curves and t = [u, v]T for a 2D surface), where
p(t) ∈ S and xi ∈ Ω(S). Depending on the required accuracy, we use LBFGS++ [135] or
Newton’s method to solve the optimization problem. An initial guess for cpS(xi) is taken
as the nearest neighbour in a point cloud PS of the parametric manifold. The point cloud
PS is constructed using N equispaced points of the parameter t.

Computing closest points to triangulated surfaces is also well-studied [162, 97, 7]. No-
tably, the work of Auer et al. [7] implements the closest point evaluation on a GPU. There
also exist open source libraries that support computing closest points to triangle meshes,
e.g., libigl [62]. Here we use the library fcpw [139] to compute closest points to triangu-
lated surfaces and polyline curves.

The simplest way to compute closest points to a point cloud is to take the nearest
neighbour as the closest point. As discussed by Macdonald et al. [90] this choice can be
inaccurate if the point cloud is not dense enough. Wang et al. [178] (Figure 17) showed the
inaccuracy of using nearest neighbours as closest points with CPM on a diffusion problem.

163

Several more accurate approaches for closest points to point clouds have been developed
[94, 130, 83, 192].

Closest points can also be computed from analytical signed-distance functions d(x) as

cpS(x) = x− d(x)∇d(x). (A.1)

Equation (A.1), however, is not valid for more general level-set functions ϕ. High-order
accuracy of closest points from level-set functions (sampled on a grid) can be obtained
using the method of Saye [143]. For the examples in this thesis, we use the ideas of Saye
[143] but with analytical expressions for ϕ. Specifically, an initial guess cp⋆ of the closest
point is obtained using a Newton-style procedure, starting with cp0 = xi, and iterating

cpk+1 = cpk −
ϕ(cpk)∇ϕ(cpk)
∥∇ϕ(cpk)∥2

,

with stopping criterion ∥cpk+1 − cpk∥ < 10−10. Then Newton’s method

yk+1 = yk − (D2f(yk))
−1∇f(yk),

is used to optimize

f(cp, λ) =
1

2
∥cp− xi∥2 + λϕ(cp),

where y = [cp, λ]T and ∥yk+1 − yk∥ < 10−10 is used as the stopping criterion. The initial
Lagrange multiplier is λ0 = (xi − cp⋆) · ∇ϕ(cp⋆)/∥∇ϕ(cp⋆)∥2. Analytical expressions for
∇f(y) and D2f(y) are computed using analytical expressions of ∇ϕ and D2ϕ.

Closest points for objects composed of multiple parts can be computed by obtaining the
closest point to each independent manifold first. Then the closest point to the combined
object is taken as the closest of the independent manifold closest points (e.g., the torus
and sphere joined by line segments in Figure 4.10).

Closest points can be computed for many other representations. For example, closest
points to neural implicit surfaces can be computed using the work of Sharp and Jacobson
[153]. Further references for closest point computation are given in Section 5.1 of [140].

164

	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Approach
	Contributions

	Closest Point Method Review
	cpm Basics
	Variants of the Closest Point Method
	Ruuth2008:CPM Approach
	Macdonald2010 Approach
	*Macdonald2011 Approach
	Guaranteeing Solutions Constant in the Normal Direction

	Scalability and Spatial Adaptivity
	Discrete Setting of the Grid-Based cpm
	Scalability
	Linear System Solver
	Spatial Adaptivity
	Continuous Setting
	Discrete Setting
	Numerical Results

	Summary and Future Work

	Interior Boundary Conditions
	Exterior Boundary Conditions for Open Manifolds
	Interior Boundary Conditions
	Adding Interior Boundary dof
	Sperp Crossing Test
	Stencil Modifications
	Open Curves C in R3
	Points C in R3
	Localizing Computation Near C
	Improving Robustness of Sperp Crossing Test
	A Nearest Point Approach for Dirichlet ibc

	Convergence Studies
	Poisson Equation with Discontinuous Solution
	Heat Equation
	Screened-Poisson Equation
	Different cpm approaches vs. a Mesh-Based Method

	Applications
	Diffusion Curves
	Geodesic Distance
	Vector Field Design
	Harmonic Maps
	Reaction-Diffusion Textures

	Summary and Future Work

	Monte Carlo Closest Point Method
	Background
	Walk-on-Spheres
	Surface pde and Closest Point Extension

	Method
	Local Feature Size Estimation
	Distance to Extended Dirichlet Boundaries

	Convergence Studies
	Applications
	Diffusion Curves
	Geodesic Distance

	Summary and Future Work

	Geodesic Paths
	Harmonic Maps
	Geodesic Paths via Harmonic Maps
	Discretization
	Stopping Criteria
	Initial Path Construction

	Comparison to yuan2021variational
	Numerical Results
	Path Shortening Comparison
	Full Pipeline Comparison

	Summary and Future Work

	Future Work for cpm
	Spatial Grid Resolution
	Additional pde, cpm Convergence, and Manifold Smoothness
	Neural Representation
	Conclusion

	References
	APPENDICES
	Closest Point Computation

