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Geodesic paths are (locally or globally) shortest paths between two points on 
a manifold. Computation of geodesic paths is a fundamental task in many 
computer graphics and computer vision applications. We propose a novel 
algorithm for computing geodesic paths on general manifold representations 
given only the ability to perform closest point queries. 

A harmonic map  is a mapping from a source manifold  to a target  
that minimizes the Dirichlet energy. If , then harmonic maps are geodesics of .

u(x) : ℳ → 𝒩 ℳ ⊆ ℝm 𝒩 ⊆ ℝn

dim(ℳ) = 1 𝒩

Our algorithm requires only heat flow on the 1D line segment and the closest point projection  
onto  — it inherits these attractive features from the method of King and Ruuth [2017]. Given some 
initial path , the geodesic path is computed by iterating:


I.Solve  for one time step of size  using explicit Euler.


II. Project  onto  via .
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, v(x,0) = uk(x), Δt

v(x, Δt) 𝒩 uk+1(x) = cp𝒩(v(x, Δt))

Discretization

The line segment  is discretized using equally spaced grid points . The geodesic 
path  is represented discretely as a polyline with vertices .

ℳ = [0,1] xi = iΔx
u ∈ 𝒩 ui = u(xi)

We construct a uniform grid of points  surrounding  with grid spacing  
and . Dijkstra's algorithm is used to compute a path 
between the nearest grid points in  to  and . The grid points  in Dijkstra's 
path are replaced with their previously computed . Finally, we spatially 
adapt the initial path, splitting and collapsing edges until all edge midpoints lie 
within a tolerance to .

yi ∈ Ω 𝒩 h
∥yi − cp𝒩(yi)∥ ≤ 3h/2
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Our algorithm allows computing geodesic paths on any manifold representation that allows closest point 
queries. Geodesics (red) computed from initial paths (blue) are given on different representations below.

Our algorithm is faster than the state-of-the-art method for general manifold representations by Yuan et al. [2021].
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We terminate when the average change of the vertices .
1

N + 2

N+1

∑
i=0

uk+1
i − uk

i ≤ tol

10010�110�210�310�4
0

400

800

1200

1600

10010�110�210�310�4
0

500

1000

1500

2000

# 
pa

th
s

runtime (sec)

Ours
Yuan et al.

Ours
Yuan et al.

Most algorithms for geodesic path computation involve minimizing length (e.g., [Yuan et al. 2021]) or 
geodesic curvature (e.g., [Martinez et al. 2005]). However, as [Yuan et al. 2021] point out, existing 
methods have mainly been designed specifically for meshes. Instead, we view geodesics in the 
setting of harmonic maps, which leads to an algorithm that can be applied to meshes, parametric 
surfaces, point clouds, level sets, exact closest point functions, and more.

Background

Step I. of the algorithm is applied independently for each of the  dimensions of . Let  and  
denote one of the particular  components of  and , respectively. On iteration , we set 

, then apply one step of explicit Euler:


.


Step II. couples the  dimensions again for each vertex  of the path via .
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