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The closest point method (CPM) has been used in for fluid 
simulations [Morgenroth et al. 2020] and geometry 
processing [King et al. 2024a, King et al. 2024b]. The most 
common discretization of CPM uses a uniformly spaced 
grid, which can be extremely inefficient for manifolds and/
or solutions with multiscale features. We propose the first 
framework to enable adaptivity with CPM, giving an 
efficient spatial discretization. 


To solve manifold PDEs with CPM, an embedding PDE is 
constructed whose solution agrees with the solution of the 
manifold PDE at points . The embedding PDE is 
solved on a tubular neighbourhood  surrounding the 
manifold  with tube radius .
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A screened-Poisson equation is solved on the spiral sheet shown 
in Figure 3 (bottom) using an adaptive computational tube (top). A 

speedup in solve time is achieved with our adaptive tube 
compared to using a uniform tube with the finest  (see Table 1).
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For spatial adaptivity the tube radius  
must be allowed to vary over different 
portions of . We divide  into  pieces 
such that . 
Each subset  is endowed with its own 
tubular neighbourhood  with its 
own tube radius  (see inset).

r𝒩(𝒮)

𝒮 𝒮 M
𝒮 = 𝒮1 ∪ 𝒮2 ∪ ⋯ ∪ 𝒮M

𝒮m
𝒩(𝒮m)

r𝒩(𝒮m)

Background

The CP extension 
operator  is incorrect 
in the overlap (see 
inset, darker colours).
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Using the CP extension operator from bordering subsets 
in the overlap provides the correct CP extension for the 
global problem and couples the subsets. That is, we set 



and vice versa for .

E1u𝒮(x) ≡ E2u𝒮(x), for x ∈ 𝒩(∂𝒮1),
x ∈ 𝒩(∂𝒮2)

Figure 1: Adaptive computational tube for a Poisson equation on an arc.

Figure 1 shows the solution of a 
Poisson equation on an arc. A fine 
grid resolution is used only near the 
centre of the arc where the solution 
gradient is large.

Figure 2 shows the behaviour of our adaptive approach as the 
grid spacing  in the red region varies in comparison to using a 
uniform computational tube with grid spacing .
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Figure 2: Convergence study (left) and ratio of using a uniform computational tube to the 
adaptive version for different attributes (right).

Table 1: Attribute comparison when solving (4), in the poster abstract, on the spiral sheet 
with uniform computational tubes versus adaptive. The error is computed at 40K equally 
spaced points in  and .θ z

Figure 3: Adaptive computational tube (top) used to compute the solution (bottom) to (4), 
in the poster abstract, on a spiral sheet.
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