
Spatial Adaptivity for Solving PDEs on Manifolds with
the Closest Point Method

Nathan King
University of Waterloo
Waterloo, ON, Canada
n5king@uwaterloo.ca

Steven Ruuth
Simon Fraser University
Burnaby, BC, Canada

sruuth@sfu.ca

Christopher Batty
University of Waterloo
Waterloo, ON, Canada

christopher.batty@uwaterloo.ca

ACM Reference Format:
Nathan King, Steven Ruuth, and Christopher Batty. 2025. Spatial Adaptivity
for Solving PDEs on Manifolds with the Closest Point Method. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference
Posters (SIGGRAPH Posters ’25), August 10-14, 2025. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3721250.3743012

1 Method
The closest point method (CPM) has recently been used in com-
puter graphics for fluid simulations [Morgenroth et al. 2020] and
geometry processing [King et al. 2024a,b]. We propose the first
framework to enable spatial adaptivity with CPM, providing a more
efficient spatial discretization. To solve manifold PDEs with CPM
an embedding PDE is constructed whose solution agrees with the
solution of the manifold PDE at points y ∈ S. The embedding
PDE is solved on a tubular neighbourhood of the manifold S ⊂ R𝑑

defined by

N(S) =
{
x ∈ R𝑑

��� ∥x − cpS (x)∥ ≤ 𝑟N(S)
}
, (1)

where cpS (x) is the closest point on S to x in Euclidean distance
and 𝑟N(S) is the tube radius. Let 𝑢S (y), for y ∈ S, and 𝑢 (x), for
x ∈ N (S), denote the functions defined on the manifold S and the
neighbourhood N(S), respectively.

Themost common discretization of CPM uses a uniformly spaced
grid within N(S) with constant 𝑟N(S) . To provide spatial adap-
tivity for CPM, the tube radius 𝑟N(S) must be allowed to vary
over different portions of S. We divide S into𝑀 pieces such that
S = S1 ∪ S2 ∪ · · · ∪ S𝑀 . Each subset S𝑚 of S, for𝑚 = 1, 2, . . . , 𝑀 ,
is endowed with its own tubular neighbourhood N(S𝑚) that has
its own tube radius 𝑟N(S𝑚 ) (see Figure 1 left). Note that each subset
S𝑚 is a disjoint piece of S except at the boundary between two
subsets where S is duplicated.

The definition of N(S𝑚) given in (1) includes the half-tubular
region surrounding the boundary 𝜕S𝑚 (darker regions in Figure 1).
This half-tubular region, denoted N(𝜕𝑆𝑚), is given by N(𝜕S𝑚) ={
x ∈ N (S𝑚)

�� cpS𝑚
(x) = cp𝜕S𝑚

(x)} . Overlaps of the neighbour-
hoods N(S𝑚) are provided by these boundary subsets N(𝜕S𝑚),
which are used to join subsets for the embedding PDE solve globally.

Consider the case of𝑀 = 2 with one boundary between S1 and
S2 given by 𝜕S1 = 𝜕S2 = S1∩S2 (see Figure 1 right). CPM extends

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Posters ’25, August 10-14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1549-5/2025/08
https://doi.org/10.1145/3721250.3743012

x ∈ N (𝜕S2)

x ∈ N (𝜕S1)
cpS1 (x)

cpS2 (x)

cp𝜕S1 (x) = cp𝜕S2 (x)

Figure 1: (Top) Overlapping adaptive tubes N(S𝑚) (grey and
red) for a spiral curve S (blue). Boundary subsets N(𝜕S𝑚)
are coloured darker and are separated by the green lines.
(Bottom) Data 𝑢S is CP extended to a point x ∈ N (S2) (black)
by assigning the value of 𝑢S at cpS1 (x) (blue point) instead
of the value at cp𝜕S2 (x) (white) and similarly for x ∈ N (𝜕S1).

manifold functions𝑢S ontoN(S) such that the function is constant
in the normal direction of S using the closest point extension. The
CP extension operator 𝐸 is defined as 𝐸𝑢S (x) ≡ 𝑢S (cpS (x)) for
x ∈ N (S). Denote the CP extension operator for N(S), N(S1),
and N(S2) by 𝐸, 𝐸1, and 𝐸2, respectively.

The CP extension of manifold data 𝑢S for x ∈ N (𝜕S1) would
ordinarily be 𝐸1𝑢S (x) = 𝑢S (cp𝜕S1 (x)). However, this choice is
incorrect for the global problem since globally 𝐸𝑢S = 𝑢S (cpS)
and cp𝜕S1 ≠ cpS on N(𝜕S1). Since cpS2 = cpS on N(𝜕S1), we
instead perform the CP extension for x ∈ N (𝜕S1) using cpS2 :

𝐸1𝑢S (x) ≡ 𝐸2𝑢S (x) = 𝑢S (cpS2 (x)), for x ∈ N (𝜕S1), (2)
and vice versa for x ∈ N (𝜕S2). In short, points in the boundary sub-
set for one region simply use the CP extension for the neighbouring
region. CPM can then be applied on N(S1) and N(S2) with no
other changes since (2) provides a sufficient condition to couple
the problem globally. In general, a subset S𝑚 can be bordered by

https://doi.org/10.1145/3721250.3743012
https://doi.org/10.1145/3721250.3743012


SIGGRAPH Posters ’25, August 10-14, 2025, Vancouver, BC, Canada Nathan King, Steven Ruuth, and Christopher Batty

multiple subsets S𝑗 , 𝑗 ≠𝑚. Therefore, 𝐸𝑚𝑢S (x) for x ∈ N (𝜕S𝑚)
can be composed of CP extensions from the multiple bordering S𝑗 .

2 Numerical Results
In the discrete setting, we construct uniformly spaced grids Ω(S𝑚)
within each N(S𝑚) for𝑚 = 1, 2, . . . , 𝑀 with grid spacing ℎ𝑚 . Our
approach adapts that of King et al. [2024b] for the construction of
the computational tubes Ω(S𝑚). Adaptivity allows efficient imple-
mentations of highly realistic simulations of phenomena in com-
puter graphics. Manteaux et al. [2017] review these methods, high-
lighting the large number of criteria used to invoke adaptivity. We
explore adaptivity based on solution gradients or local feature size.
Further examples and details of our approach are given in [King
2025, Section 3.4].

2.1 Solution Gradients
Fine grid resolutions are required to capture large variations in
the solution of a PDE. When the large variations are localized to a
small region of the computational domain, spatial adaptivity is an
effective approach to improve efficiency.

Consider the Poisson equation

ΔS𝑢S = −80000
𝜋2

tanh (200𝜃/𝜋 + 50)
cosh2 (200𝜃/𝜋 + 50) ,

𝑢S (−3𝜋/4) = − tanh(100) ≈ −1,
𝑢S (𝜋/4) = tanh(100) ≈ 1,

(3)

on the arc of the unit circle with 𝜃 ∈ [− 3𝜋
4 , 𝜋4 ]. The exact solution

is 𝑢S (𝜃 ) = tanh (200𝜃/𝜋 + 50). The solution rapidly transitions
from −1 to 1 over a small region centred at 𝜃 = −𝜋

4 .
We divide S into three subsets S1, S2, S3 with 𝜃 ∈ [− 3𝜋

4 ,− 3𝜋
10 ],

𝜃 ∈ [− 3𝜋
10 ,− 2𝜋

10 ], 𝜃 ∈ [− 2𝜋
10 ,

𝜋
4 ], respectively (see Figure 1 on the

accompanying poster). CPM is used to solve (3) with cubic interpola-
tion, second-order centred finite-differences, and second-order BCs
(see [King et al. 2024b, Section 3.3]) on the adaptive computational
tube Ω(S1) ∪ Ω(S2) ∪ Ω(S3). The tube radii of Ω(S1) and Ω(S3)
are held constant with 𝑟Ω (S1 ) = 𝑟Ω (S3 ) with ℎ1 = ℎ3 = 0.025.
To investigate the effect of the grading between subsets we vary
𝑟Ω (S2 ) using ℎ2 = 0.025×2−𝑖 for 𝑖 = 1, 2, . . . , 8 and some arbitrarily
chosen values ℎ2 = 0.008, 0.0045, 0.00229, 0.00113, 0.0005, 0.000283,
0.0001426. Note that these arbitrarily chosen ℎ2 give a Ω(S2) that
is not aligned with the other two subsets.

Eigen’s SparseLU is used to solve the linear system for results
in Figure 2, on the poster, which presents a convergence study
(left) for the max-norm error using both an adaptive computational
tube and a uniform computational tube with ℎ = ℎ2. The errors
using the adaptive and uniform computational tubes are nearly
identical and show the expected second-order convergence. Note
that the error on S is dominated by the error on S2, which is why
the max-norm error of the adaptive and uniform solutions match.
The max-norm error is computed from 100 equally spaced points
in the 𝜃 parameter.

Figure 2 (right) on the poster illustrates the improvement in effi-
ciency of the adaptive approach by comparing the corresponding
values for the uniform approach with those of the adaptive ap-
proach, specifically the LU decomposition time, forward/backward
solve time, and number of DOFs. There is a runtime improvement

of up to 10× and 13× for the LU decomposition and solve time,
respectively. The timings are the average values of 20 trials.

2.2 Local Feature Size
Manifolds with small local feature size (LFS) can drastically increase
CPM’s computational cost if a uniform computational tube is used.
LFS is defined as the minimum Euclidean distance from y ∈ S
to the medial axis of S. With a uniform computational tube, the
tube radius must satisfy 𝑟Ω (S) < reach(S) = miny∈S LFS(y). This
leads to a large number of unnecessary DOFs for subsets S𝑚 of S
where LFS(y) > reach(S). Therefore, an adaptive computational
tube can improve the computational cost of CPM by allowing larger
𝑟Ω (S𝑚 ) for subsets S𝑚 with LFS > reach(S).

Consider a spiral sheet surface constructed by extending the hy-
perbolic spiral, r(𝜃 ) = 1

𝜃 [cos𝜃, sin𝜃 ]𝑇 , in the 𝑧-direction, creating a
surface akin to a rolled-up sheet of paper with width𝑊 (see Figure
3, bottom, on the poster). The example below takes 𝜃 ∈ [0.3, 12.5]
and 𝑧 ∈ [0, 4]. We solve the screened-Poisson equation

−ΔS𝑢S + 𝑢S =

(
1 + 4𝜋2 (𝐿2 +𝑊 2)

𝐿2𝑊 2

)
cos

(
2𝜋𝑠
𝐿

)
cos

(
2𝜋 (𝑧 − 𝑧0)

𝑊

)
,

(4)
on this surface with zero-Neumann BCs, which has the exact solu-
tion

𝑢S (𝑠, 𝑧) = cos
(
2𝜋𝑠
𝐿

)
cos

(
2𝜋 (𝑧 − 𝑧0)

𝑊

)
. (5)

Note that the arc-length 𝑠 of the hyperbolic spiral is used above,
which can be computed from 𝜃 via

𝑠 =
∫ 𝜃

𝜃0

√
1 + 𝜃2
𝜃2

𝑑𝜃 =

[
ln

(
𝜃 +

√︁
1 + 𝜃2

)
−
√
1 + 𝜃2
𝜃

]𝜃
𝜃0

. (6)

Figure 3 on the poster shows the adaptive computational tube
Ω(S1) ∪ Ω(S2) ∪ · · · ∪ Ω(S5) and solution when solving (4) on
the spiral sheet. The subsets S1, . . . ,S5 are taken to be constant in
the 𝑧 parameter and divided at 𝜃 = 1.7, 3.1, 4.7, 11. The resolutions
used on Ω(S1), . . . ,Ω(S5) are ℎ𝑚 = 0.064, 0.032, 0.016, 0.012, 0.008,
respectively. The same interpolation and finite-difference methods
that were used for the arc example above are used here, but only
first-order BCs are imposed. The BiCGSTAB solver of King et al.
[2024b] is used for this problem.

A fast, but incorrect, solution can be computed with ℎ = 0.064.
The max and average errors are 25× and 178× larger, respectively,
on the uniform tube with ℎ = 0.064 compared to the adaptive
tube (see Table 1 on the poster). To obtain an accurate solution
on a uniform Ω(S) we need 𝑟Ω (S) < reach(S), which requires
ℎ = 0.008. This results in a Ω(S) with ∼2.9 million DOFs and
requires about 22 minutes to compute the solution (see Table 1 on
the poster). The adaptive computational tube can produce a solution
that is visually indistinguishable from the uniform solution with
ℎ = 0.008 but with 6.5× fewer DOFs and in only 76 seconds (around
17× faster). The max error is about 7× larger for our adaptive
solution but only 2.5× larger on average.

Acknowledgments
Nathan King was supported in part by the QEII Graduate Schol-
arship in Science & Technology. Steven Ruuth was supported in



Spatial Adaptivity for Solving PDEs on Manifolds with the Closest Point Method SIGGRAPH Posters ’25, August 10-14, 2025, Vancouver, BC, Canada

part by an NSERC Discovery grant (RGPIN-2022-03302). Christo-
pher Batty was supported in part by an NSERC Discovery grant
(RGPIN-2021-02524) and the CFI-JELF program (Grant 40132).

References
Nathan King. 2025. Closest Point Geometry Processing: Extensions and Applications of

the Closest Point Method for Geometric Problems in Computer Graphics. PhD thesis.
University of Waterloo. https://hdl.handle.net/10012/21853

Nathan King, Steven Ruuth, and Christopher Batty. 2024a. A Simple Heat Method for
Computing Geodesic Paths on General Manifold Representations. In SIGGRAPH

Asia 2024 Posters (SA ’24). ACM, New York, NY, USA, Article 69, 2 pages. https:
//doi.org/10.1145/3681756.3697920

Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty.
2024b. A Closest Point Method for PDEs on Manifolds with Interior Boundary
Conditions for Geometry Processing. ACM Transactions on Graphics (2024). https:
//doi.org/10.1145/3673652

P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P. Cani. 2017. Adaptive
Physically Based Models in Computer Graphics. Computer Graphics Forum 36, 6
(2017), 312–337. https://doi.org/10.1111/cgf.12941

D. Morgenroth, S. Reinhardt, D. Weiskopf, and B. Eberhardt. 2020. Efficient 2D Sim-
ulation on Moving 3D Surfaces. Computer Graphics Forum 39, 8 (2020), 27–38.
https://doi.org/10.1111/cgf.14098

https://hdl.handle.net/10012/21853
https://doi.org/10.1145/3681756.3697920
https://doi.org/10.1145/3681756.3697920
https://doi.org/10.1145/3673652
https://doi.org/10.1145/3673652
https://doi.org/10.1111/cgf.12941
https://doi.org/10.1111/cgf.14098

	1 Method
	2 Numerical Results
	2.1 Solution Gradients
	2.2 Local Feature Size

	Acknowledgments
	References

