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Figure 1: Contraction of a plastic sphere by a directed heat source at the top of the sphere.

ABSTRACT

This project implements a physically based thin shell model that
can incorporate deformations due to environmental stimuli. The
implementation is based on the model in [Chen et al. 2018]. This
thin shell model captures the physics while avoiding expensive
volumetric discretizations. Environmental effects induce local, dy-
namic changes to the rest metric of the material. Simulations of a
square deforming provides an analytical experiment. A qualitative
simulation of heating a plastic sphere is also given.
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1 INTRODUCTION

Thin shells are common objects in our physical world. Their char-
acteristics are therefore studied in many fields, e.g., mechanics, bi-
ology, architecture, and computer graphics. Understanding how
shells deform is important in mechanics for fabrication of tubes
that change shape due to temperature or in biology when an al-
mond leaf is attacked by Taphrina Deformans [Sharon and Efrati
2010]. In architecture, elastic shells are useful for self-constructing
timber surfaces [Wood et al. 2016] or to construct climate respon-
sive aperture [Correa and Menges 2017]. In computer graphics there
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are many applications for simulating everyday phenomena of thin
shells, e.g., leaves curling up when drying out, paper stretching and
curling due to spilled coffee, and plastic shrinking due to heat [Chen
et al. 2018].

This project consists of implementing a physically accurate, dis-
crete, thin shell model [Chen et al. 2018]. This thin shell model
can be used to simulate deformation of shells with small thick-
ness, while avoiding expensive volumetric discretizations. Using
the Kirchhoff-Love assumption the volumetric shell is represented
by just its midsurface. A triangulated mesh can then be used as a
discrete version of the continuous midsurface.

The thin shell model has two main components. A discrete geo-
metric shell model is given that supports arbitrary rest shape and
physical settings (thickness and Lamé parameters). The elastic shell
model is also coupled with effects from the surrounding environ-
ment such as moisture and temperature.

The next section discusses related work for modelling and sim-
ulating thin shells. The geometric and physically based thin shell
model is detailed in section 3. First the continuous model is dis-
cussed followed by its representation in the discrete setting. In sec-
tion 4, implementation details are given before presenting some
simulation experiments. The paper concludes with a discussion
and ideas for future work.

2 RELATED WORK

Environmental effects of burning a shell boundary or melting a
solid have been explored in [Liu et al. 2009; Losasso et al. 2006;
Melek and Keyser 2003, 2005, 2007]. Most of these works do not
include elastic deformations or are non-physical. A more principle
elastic model based on mass-springs is presented in [Larboulette
et al. 2013]. However, update rules for the mass-springs can be
difficult for non-uniform materials. A bilayer of springs is used
in [Jeong et al. 2011, 2013] to allow differential growth due to mois-
ture gradients across the thickness of leaves.

A more physically based and mathematically elegant approach
involves using the Kirchhoff-Love assumption. This assumes that
the shell does not shear in the transverse direction. That is, the
shell volume can be represented by normal offsets of its midsurface.
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Figure 2: The volumetric slab Q X [-h/2, h/2] is represented
by just its midsurface r, which is a map from the parame-
terization domain Q to a surface in R3. Figure reproduced
from [Chen et al. 2018].

Thus, the physics can then be detailed in terms of the fundamen-
tal forms of its midsurface [Ciarlet 2000; Weischedel 2012]. Note
that the work presented in [Weischedel 2012] provides a Cosserat
shell model, which has a very similar discrete geometric frame-
work to [Chen et al. 2018]. The key property of these models is that
the rest, or strain-free, state of the shell is not flat, i.e., it can pro-
trude into R3. There has been much research in physics for these
non-Euclidean shells [Efrati et al. 2009a,b; Goriely and Amar 2005;
Kim et al. 2012; Klein et al. 2007; Sharon and Efrati 2010].

In graphics, thin shells were first used for cloth simulation with
flat rest states [Baraff and Witkin 1998; Bridson et al. 2002]. The
introduction of non-zero rest curvature to graphics was first done
in [Grinspun et al. 2003]. An extrinsic description of the surface is
however necessary to be physically robust [Grinspun et al. 2006].
The approach take in this project using [Chen et al. 2018] incorpo-
rates information about the extrinsic deformation of the shell.

3 GEOMETRIC SHELL MODEL

The thin shell model will be briefly discussed in the continuous
setting first. The remainder of this section will then present the
discrete model on a triangulated mesh. The energy formulation of
the model is the necessary component to determine the dynamics
of the shell. The overall idea is to determine the energy based on
differences between the rest and current (deformed) states. The en-
ergy is differentiated to compute forces on the shell. The motion
of the shell is then determined using Newton’s second law.

3.1 Continuous formulation

Consider a shell S ¢ R3 that has thickness h. The shell can be
represented by an embedding ¢ : Q x [-h/2,h/2] — R3, where
Q is a planar parameter domain. The entire volume of the shell
can be represented by only its midsurface r : Q — R? using the
Kirchhoff-Love assumption [Ciarlet 2000; Weischedel 2012]. The
embedding of the shell can be written as

$(x,y,2) = r(x,y) + zi(x, y), ¢Y)
where fi is the normal of r (see Figure 2).

The metric g on the volumetric slab Q X [—h/2, h/2] can be writ-
ten in terms of the geometry of the midsurface r. Denote the first,
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second, and third fundamental forms of r as
a=drldr, b=—drldh, c=dn’dn,
respectively. Then the metric on the volume is
a—2zb+z%¢ 0
g= 0 e @)

It is not always possible to find an embedding into R? such that
the thin shell is at rest globally. For example, coffee spilled on pa-
per will cause the paper to buckle out of plane. A new rest state
is obtained by balancing between stretching and bending strains,
which makes the rest state non-Euclidean. A rest metric g for the
volume is necessary to model any phenomena whose rest state can
become non-Euclidean. For thin shells only differential in-plane
swelling is important. It is therefore assumed that the rest metric
is linear in the thickness direction

gz[a—02zb (1)] )

Note that the special case when a shell is initially flat at rest, an
embedding T exists and the rest fundamental forms can be specified
by the & = a® and b = b0, where a® and bV are the shells funda-
mental forms at ¢ = 0. Environmental effects are incorporated by
inducing changes in the rest metric g.

Thin shells are more easily bent than they are stretched. There-
fore, it is assumed that the in-plane strain of the midsurface is
small, ie, ||[a™ a = I]lee < h. It is also assumed that the material
of the shell is uniform and isotropic. The St. Venant-Kirchhoff ma-
terial model with the Green strain is the simplest constitutive law
that is consistent with the above assumptions [Weischedel 2012].
The elastic energy density can be approximated up to O (h%) as

h _ . - =
W(xy) =7l a-TI3y + 1™ (b - by | Vdeta ()

where || - ||sy is the St. Venant-Kirchhoff norm
2 a 2 2
- Ny = 5tr()” + e (%)
The material parameters a and §§ are dependent on Young’s modu-
lus E and Poisson’s ratio v as
Ev E
a=—7, f=——.
1-v2 2(1+v)

3.2 Discrete formulation

Fundamental Forms and Energies. The midsurfaces of the shells are
approximated with triangular meshes M = (V,E, F) consisting
of vertices, edges, and faces. It is assumed that the fundamental
forms, a, b, a, b, are constant over the face of each triangle. A global
parametrization can not be assumed since the midsurface is as-
sume to be non-Euclidean. Therefore, each triangle is independently
parameterized in its own barycentric coordinates. It is important
to note that this means that the discrete fundamental forms will
not agree across the edge of two adjacent faces.

Denote the vertex positions in V as x1, X2, ..., Xm, which are a
discrete representation of r. The face in F that contains x;, X;, Xk,
is denoted f; ;. The face f;j is embedded locally using the affine
mapping 1;x : T — R3, which is given by

rl-jk(u, 0) = X; +u(xj — x3) +0(Xg — X;),
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where 7 is the unit triangle with vertices (0, 0), (1,0), (0,1). By
differentiating this embedding with respect to u and v it can be
shown that the first fundamental form on f;j is given by

lIx; —xill?
(x5 —xi) - (X = %i)

Ajjk = O = x)- (Xk2_ x)
Il — xill

Notice that this 2 X 2 matrix encodes information about length on

the triangle f; ..

A discretization of the second fundamental form is more in-
volved. One would like to use the Kirchhoff-Love assumption to
move the midsurface into the volume by parallel offsets. However,
offsetting triangle meshes in the normal direction is not guaran-
teed to produce a triangle mesh. As discussed in [Chen et al. 2018]
there is no perfect choice for parallelity of the mesh. Using the mid-
edge normal however has the numerical advantages of having a
compact stencil and being robust to triangle inversion [Grinspun
et al. 2006; Weischedel 2012].

Denote e; as the edge opposite the vertex i on face fj i, whose
normal is

(xj = xi) X (X —x4)
1(xj = %) % (x =)l

Djjk =
Then the mid-edge normal 1; is given on edge e; as

A= | Mijks if ¢; on oM,
! mean of n;j of faces incident on e;, otherwise.

Let fiejk be the triangle formed by offsetting all the edges of f;

by a distance € in their mid-edge normal direction. Denote the first

fundamental form of fl.ej L as afjk. Then, from (2), we can think of

b;ji as a first order correction to af.k = a;jk —2€byji +0(€?). This
gives the definition of the discrete second fundamental form as

byje = [ (B — 1) - (xi — x;)

(h; - ﬁj) (X — Xg) ]
(= fig) - (x5 — x;5) ‘

(0 = fig) - (xi = xg)
Now the discrete energy can be written, analogous to the con-

tinuous formulation, as

3

h h [
Eclastic (X) = Z (gEstretch + iEbend) det Ajjks
f; jk eF

where

=1 2
Egtretch = ”aijkaijk - IHSV’
- = 2
Epend = ||a,~jk(bijk - bijk)||5v~
A viscous damping energy is also included in the model to produce
drag forces necessary to avoid unrealistic infinite elastic oscilla-

tions. The Kelvin-Voigt damping model is used, which corresponds
to the following damping energy

n h 3 -
Edamp (x, xP™) = EAt Z (gmfstretch + ﬂwbend \[det Ajjks

fijx
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where
__prev]|?
w. _ (aprev)_1 Aijk aJijk
stretch = ijk At >
N4
2
. yprev
i _ (aprev)_1 b’]k bijk
bend ijk AL
N4

Time Integration. Assume there are m vertices in our triangular
mesh M. We can form a vector x € R3™ consisting of all the ver-
tex positions x; € R3. Denoting the force exerted on vertex i as
F; € R3, the force vector F € R3™ can be constructed by stacking
F;’s in the same order as x;’s in x. Then Newton’s second law can
be written as
d?x
dr?
where A € R3%3™ s the diagonal mass matrix.
The matrix A has the mass A; of each vertex on its diagonal, i.e.,

diag(A) = (A1, A1, AL, ooy A Ay Am).-

=F, ®)

The mass at vertex i is computed as one third the mass of each
triangle in its one-ring

B ph +/det ag
A = fz 32
=

where p is denotes shell density and +/det a¢/2 is the area of face
f.

Evolving the model in time is done using the implicit Euler scheme.
Denote the position and velocity at time t! = t9 + iAt as x* and v/,
respectively. Then, after writing (5) as a system of first order equa-
tions, time stepping with implicit Euler is gives

Xi+1 — Xi + Atv“’l,
i+1 i 6
R ©
At A
The force is given by

F(XH—l’ Xi) = Fext — VEelastic(Xi+1) - VEdamp (Xi+1s Xi)’

but no external forces were used in this project.

The gradients of Eejastic and Egamp are needed to compute the
force vector F. Furthermore, the nonlinear system of equations (6)
is solved using Newton’s method, which requires the Jacobian of
F. First and second derivatives of the energies are unpleasant to de-
rive, especially the bending term [Chen et al. 2018]. Therefore, the
code for the energy derivatives was obtained from the first author
of [Chen et al. 2018]. To verify the code was incorporated correctly
the gradient of Eg et Was derived and is given in Appendix A.

Newton’s method is implemented to solve the nonlinear equa-
tion in terms of §v = vi*! — vi. Substituting the first equation into
the second in (6) gives

A5—V =F (Xi + Atv”l,xi) . 7)

At
Note we can also write x'*1 = x! + Atvi+ At (vi+! —vi) = X+ Atdv,
where % = x’ + Atv? is an initial guess for the new position using
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explicit Euler. Rearranging (7) and substituting x'*! = % + Atdv,
gives the nonlinear equation that is solved via Newton’s method

o (8v) = ASv — AtF (X + Atév, v') = 0.

Environmental stimuli. Environmentally induced changes to the shell

are incorporated by updating the rest fundamental forms a, b. Set-
ting and updating the rest state depends on the model chosen for
growth/shrinkage of the shell. The main models for the rest met-
ric in [Chen et al. 2018] are no growth, isotropic growth, linear
swelling, and piecewise constant swelling.

The two models used for this project are no growth and isotropic
growth. The no growth model is that of a classic shell. The rest state
is fixed as the initial fundamental forms a® and bY, i.e., a = a% and
b = bV for all time. In the isotropic growth model it is assumed that
the shell deforms uniformly throughout the thickness. Therefore,
we set & = e2%ika0 and b = bY, where sijk is the conformal factor
for the amount of growth or shrinkage.

Due to time constraints, incorporating moisture from the sur-
rounding environment was not accomplished in this project. The
linear and piecewise constant swelling models in [Chen et al. 2018]
are designed to handle moisture (or heat). The amount of additional
moisture in the shell is modelled using a diffusion equation with
source terms on the boundary of the shell. This additional moisture
computed throughout the volume alters the rest state. For phenom-
ena that add mass to the shell (e.g., coffee soaking into paper) the
mass matrix A must also be updated.

4 RESULTS

4.1 Implementation Details

The triangle mesh data structure was created from scratch. It is
based on the idea of a half-edge data structure, but is implemented
as a face-based structure [OpenMesh 2019]. A triangle mesh is
loaded from vertex and face data in a given .obj file format. The
data structure defines directed edges between vertices on a face,
while ensuring that all faces in the mesh have a consistent orien-
tation (clockwise or counter-clockwise). Consistent orientation is
achieved by having two edges between each vertex in opposing di-
rections (except on the boundary). The geometry from the .obj file
is checked to ensure the orientation of the faces is consistent and
fixes any inconsistencies.

Positions x and velocities v are stored per vertex. Face normals
n;jk, edges e;, and fundamental forms (a, b a, b) are stored per
face. Mid-edge normals fi¢; and a pointer to the opposite face are
stored per edge. A mapping from edge to incident faces is needed
to compute the mid-edge normal.

Eigen [Guennebaud et al. 2010] is used for matrix math through-
out the project. The Newton gradient Vo = A—At?VF is symmetric
and almost always positive-definite. Therefore, a sparse Cholesky
decomposition is used for Newton’s method. In [Chen et al. 2018],
the authors encountered cases when the matrix was not positive-
definite. In these cases they regularized Vo. Regularization was not
needed for the examples in this project.

A line search method was used in [Chen et al. 2018] to allow
larger time steps. No line search was implemented with Newton’s
method in this project and a step size of At = 5 x 1076 was used
for all examples. Time steps of size At = 10™% were achieved

King
Thickness h 0.1 mm | Viscosity 7 5% 10713 Pas
Young’s Mod. E 2 x 10? Pa | Poisson Ratio v 0.3
Density p 250kg/m?>

Table 1: Physical parameters used for all numerical experi-

ments in this project. These values are reasonable for ordi-
nary paper [Chen et al. 2018].

Figure 3: Deformation of the unit square using rest funda-
mental forms for an enlarged square (top), rhombus (mid-
dle), and cylindrical patch (bottom). The initial state (left)
close to equilibrium is compared after 1000 times steps
(right) with At = 5 x 1076,

in [Chen et al. 2018], which would speed up our simulations here. A
line search was not implemented to simplify implementation and
ensure everything worked properly first. Then, due to time con-
straints I was not able to implement it. Another optimization used
in [Chen et al. 2018] is an inexact Hessian computation. Again, this
was not used for this project to ensure correctness of the implemen-
tation (but is implemented and could be easily turned on).

The physical parameters used throughout are those given in [Chen
et al. 2018] and included here in Table 1. Note also that explicit Eu-
ler was implemented as a sanity check for the Newton’s method
implementation. It was noticed that explicit Euler needed times
steps around an order of magnitude smaller than implicit Euler to
remain stable.

4.2 Experiments
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a*¥y b*Y Shape
41 0 Enlarged Square
2 1
[ 1 9 ] 0 Rhombus
I L0 Cylindrical Patch
0 0 ylindrical Patc

Table 2: Rest fundamental forms for the deforming square.

Deforming square. An analytical benchmark of a deforming square
is used to check that the implementation is correct. The parametriza-
tion domain Q is set to the unit square. The square is represented
by a triangulated mesh of 108 vertices and 184 faces. The no growth
model is used for the rest fundamental forms, ie., 3 = al and
b = b0 for all ¢. It is expected that the square deform to equili-
brate as the surface with the specified initial forms a® and b?. The
three shapes used in this project are an enlarged square, a rhombus,
and a cylindrical patch (see Table 2).

The rest fundamental forms are specified in Table 2 with respect
to the xy-plane because the shells initial configuration is flat. There-
fore, we need to map the fundamental forms a*¥, b*¥ to the fun-
damental forms a; i, b; jk in the barycentric coordinates of each
f;jk- The transformation matrix that maps vectors in barycentric
coordinates to R? is

T= [ x?—x? xg—x?.
Note that the transformation matrix is just T = dr, which we used
to construct a = drldr. In the initial flat configuration, however,
the z-coordinate is a constant (say z = 0). Therefore, the transfor-
mation matrix T € R?*? is constructed with only the x and y com-
ponents of x;. The fundamental forms in barycentric coordinates
are then

a=T'a"¥T, b=Tb*T.

The simulations take around 10 seconds per time step. The to-
tal simulation times are therefore on the order of hours due to the
small times steps (At = 5x1076) and because growth/swelling phe-
nomena take place at relatively long time scales [Chen et al. 2018].
Therefore, to decrease the computational time, the initial shape of
the unit square was taken close to equilibrium. The exact initial
shapes and how they were perturbed is discussed in Appendix B.

As is seen in Figure 3 the shapes stay relatively the same and
are moving towards equilibrium. It can not be seen from these still
images, but the accompanying videos show that the shapes oscil-
late bigger and smaller than the equilibrium state. In Figure 3, the
enlarged square has moved from having lengths of 1.95 to closer
to 2.0, but is still not there. Moreover, the rhombus has moved but
its sides are bent slightly.

Figure 4 shows the elastic energy of all three configurations. It
can be see that it oscillates towards equilibrium and convergence
is relatively slow. Time steps of At = 1074 using a line search
method would allow the simulation to skip every 20 times steps.
Note also that the elastic energy of the cylindrical patch is much
smaller than for the enlarged square and rhombus. This is expected
because the bending energy is O(h?) and the cylindrical patch is
only bending (no O(h) stretching).
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Figure 4: Elastic energy of the unit square while deforming
to an enlarged square, rhombus, and cylindrical patch.

t = 835At

t=0

t = 1665At

t = 2500At

Figure 5: Contraction of a plastic sphere by applying uni-
form heat to the whole sphere.

Contracting sphere. In this simulation a plastic sphere is exposed
to heat. To model the shrinking of plastic due to heat the isotropic
growth model is used with a negative s; ;. The unit sphere is ap-
proximated with 162 vertices and 320 faces.

The conformal factor s; ;. was specified somewhat manually since
the heat was not modelled using diffusion, as discussed in sec-
tion 3.2. For the first example we specify a constant value for s;
for all faces such that a = 0.9a". Figure 5 shows the sphere shrink-
ing and buckling due to the heat. Note that the time scale for the
heat to buckle the plastic is obviously incorrect since we are not
physically modelling the heat. However, the shape at the final time
looks like a plausible outcome.
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Figure 6: Elastic energy of the unit plastic sphere deforming
due to heat.

It is unlikely that plastic would be heated completely uniformly
around its shell. Therefore, a simulation using a directed heat source
is constructed as follows. The s;jx values were changed such that
a = 0.75a0 for only faces having vertices with z > 0.75. Then
the s; . for other faces were updated by averaging s; jx from three
adjacent faces with the current s; ;. to fake heat diffusion. Plastic
objects usually only melt when close to the heat source. Therefore,
the bottom of the sphere (z < 0) is fixed with s; ;% = 0 so that the
bottom keeps a = a0.

Figure 1 shows the sphere at different times as it shrinks due to
the directed heat source. Once again, the contraction and buckling
behaviour seems plausible for this triangulated sphere of 320 faces.
The energy for both uniform and directed heat sources is given in
Figure 6, which expectedly decrease as t increase.

The included video of the simulation of the plastic spheres shrink-
ing due to heat represent the dynamics better than the selected im-
ages included here. It is important to remember that the spheres
oscillate towards equilibrium due to such small time steps (see Fig-
ure 6). Therefore, the spheres will not just contract, but will grow
slighting and then shrink further. These oscillations would not be
seen if the heat was modelled at the correct time scales instead of
at scales of 5 x 1076 seconds (but it would take too long to run).

5 CONCLUSION AND FUTURE WORK

Incorporating environmental effects using a physically accurate
model is an important remaining piece. Moisture (temperature)
changes are computed using a finite element method for diffusion
on triangular prisms in [Chen et al. 2018]. Once the diffusion equa-
tion is solved on the volume, the moisture values on the top and
bottom boundaries of the shell, m™ and m~, are used to update the
rest fundamental forms 3, b.

This model has proven to be difficult numerically since it only
allows time steps less than 107%. It would be interesting to dis-
cretize the first and second fundamental forms in terms of a clos-
est point representation of the surface [Ruuth and Merriman 2008].
Discretization using the closest point representation would result
a numerical scheme that uses standard finite difference methods
on Cartesian grids, while respecting the shell geometry. Using fi-
nite differences on Cartesian grids would be more easily optimized
due to its regular structure.

King

This project aimed at implementing a physically-based thin-shell
deformation model that responded to environmental stimuli. It fol-
lowed closely the work in [Chen et al. 2018] for the discrete elastic
energy and time evolution. From the example of a plastic sphere, it
was demonstrated that environmental stimuli can deform the shell
through changing the rest fundamental forms & and b.
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A GRADIENT OF STRETCHING ENERGY
The energy for the stretching term is given by

h, __ [ .-
Egtretch (%) = Z (g”aiﬁcaijk—lngv) detaijk,
fijkEF

The gradient of VEgj,sic € R3™ is a vector in the 3m-dimensional
space of all the position coordinates. For simplicity, consider dif-
ferentiating just with respect to one component x.
Grouping constants and writing out the norm gives the form
2
E =cqtr? (5_1(:1 - a)) + cotr (é_l(a - é)) ,

where c1, c2 € R. For any matrix A(x) we have that

d o _ dA
atr (A) = 2tr(A)tr ( dx)

d 9 dA dA dA
—tr(A)” =tr|A— | +tr| —A| =2tr |[A— |,
dx dx dx

and

dx
using the property that tr(AB) = tr(BA).

We now just need to compute dA/dx, which in our case A =
(a!(a—4)). The rest fundamental form a does not depend on
the positions x, therefore we only need the derivative of a. Let
R=dr=[x; —%; | X, —x;], thena = RTR and

da d (p\ (dR\' . [dR

Simplifying using properties of the trace, it can be shown that

T T
d—E =2cqtr Ra! d—R + 4cotr Ra1aT d—R .
dx dx dx

This expression can be further simplified for implementation since
the components of % are just 1.

B INITIAL CONDITIONS FOR DEFORMING
SQUARE

Enlarged square. For the enlarged square a*¥ = 4] and b = 0. It is
obvious that this shape is a square with side length 2 because the

CS888, Physics Based Animation, University of Waterloo

diagonal components in the definition of a are lengths squared. The
initial state was taken as a square with side lengths of 1.95.

Rhombus. For the rhombus we have b = 0 and
2 1
a¥y = [ 1 9 ] .
Looking at the components of a we have that
(x5 —xi) - (x5 —x4) = 2,
(xj=xi) - (X —x3) =1,
(xg = xi) - (X = xi) =2,
and we need to find the vectors xj; = (x; —x;) and xx; = (X —x;).
]T

Since the rhombus is 2D we can denote x; = [x1,y1]" and xg; =

[x2,y2]T giving three equations
x% + y% =2,
xix2 +y1y2 = 1,
x% + y% =2,
with four unknowns. Using the symmetry of the rhombus about

y = x gives x1 = y2 and y1 = x9, which allows us to solve for
Xji, Xg;j as

TSN |0 MTo VB4l

A transformation matrix T = [Xj; | Xj;] is used to map vertices on
the original mesh of the unit square to the rhombus spanned by
{xji, Xg;}. The initial state was taken as 90% the size of the equilib-
rium rhombus using 0.97T for the transformation matrix.

1[«/§+1 1 \/5—1].

Cylindrical patch. For the cylindrical patch we have a*¥ = I and

= 10

b=l o o
This means the mean curvature of the cylinder is k = 1. A cylinder
aligned along the y-axis only has curvature in the xz-plane. View-
ing the cylinder down the y-axis gives a circle, whose curvature is
k = 1/r. Thus, the radius of the equilibrium cylinder is r = 1.

Therefore, to map the unit square in the xy-plane to the unit

radius cylinder we just change the x and z coordinates by mapping
unto the circle in the xz-plane. All y coordinates remain the same.
The mapping is the usual mapping of x = r cos(0) and z = r sin(6)
but with the angle 0 carefully shifted as
_x—-05 pi
Ty 2
The initial state of the surface was a cylindrical patch of radius
r = 2 instead of r = 1.

0
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